Answer:
Shearing stresses are the stresses generated in any material when a force acts in such a way that it tends to tear off the material.
Generally the above definition is valid at an armature level, in more technical terms shearing stresses are the component of the stresses that act parallel to any plane in a material that is under stress. Shearing stresses are present in a body even if normal forces act on it along the centroidal axis.
Mathematically in a plane AB the shearing stresses are given by

Yes the shearing force which generates the shearing stresses is similar to frictional force that acts between the 2 surfaces in contact with each other.
Answer:
if their body parts stuck in a machine,if machine expl
Explanation:
ode.
Answer:
1. Location of enemy ground troops - EARTH OBSERVING.
Using earth observing satellite imagery, the military can observe vast expanses of land and in so doing, find the location of enemy ground troops.
2. Routine reconnaissance of an unfamiliar climate - WEATHER
In other to find out more about the climate of an area, a weather satellite can be used to observe the areas and its changing weather patterns.
3. Analyze waterways in an unfamiliar location - NAVIGATION
Using navigation satellites, navigation conduits such as roads and waterways can be observed.
4. Provide warning of an attack - COMMUNICATION.
Communications satellites enable people to communicate over great distances and so can be used by the military to warn of an impending attack.
Answer:
The tube surface temperature immediately after installation is 120.4°C and after prolonged service is 110.8°C
Explanation:
The properties of water at 100°C and 1 atm are:
pL = 957.9 kg/m³
pV = 0.596 kg/m³
ΔHL = 2257 kJ/kg
CpL = 4.217 kJ/kg K
uL = 279x10⁻⁶Ns/m²
KL = 0.68 W/m K
σ = 58.9x10³N/m
When the water boils on the surface its heat flux is:

For copper-water, the properties are:
Cfg = 0.0128
The heat flux is:
qn = 0.9 * 18703.42 = 16833.078 W/m²

The tube surface temperature immediately after installation is:
Tinst = 100 + 20.4 = 120.4°C
For rough surfaces, Cfg = 0.0068. Using the same equation:
ΔT = 10.8°C
The tube surface temperature after prolonged service is:
Tprolo = 100 + 10.8 = 110.8°C
Answer: b. To avoid having distractions
Trust me it’s definitely option b