1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timurjin [86]
2 years ago
8

Which of the following devices would you expect to consume the most energy for each hour that it operates?

Engineering
1 answer:
Gennadij [26K]2 years ago
4 0
An electric space heater
You might be interested in
A flywheel made of Grade 30 cast iron (UTS = 217 MPa, UCS = 763 MPa, E = 100 GPa, density = 7100 Kg/m, Poisson's ratio = 0.26) h
hram777 [196]

Answer:

N = 38546.82 rpm

Explanation:

D_{1} = 150 mm

A_{1}= \frac{\pi }{4}\times 150^{2}

              = 17671.45 mm^{2}

D_{2} = 250 mm

A_{2}= \frac{\pi }{4}\times 250^{2}

              = 49087.78 mm^{2}

The centrifugal force acting on the flywheel is fiven by

F = M ( R_{2} - R_{1} ) x w^{2} ------------(1)

Here F = ( -UTS x A_{1} + UCS x A_{2} )

Since density, \rho = \frac{M}{V}

                        \rho = \frac{M}{A\times t}

                        M = \rho \times A\times tM = 7100 \times \frac{\pi }{4}\left ( D_{2}^{2}-D_{1}^{2} \right )\times t

                        M = 7100 \times \frac{\pi }{4}\left ( 250^{2}-150^{2} \right )\times 37

                        M = 8252963901

∴ R_{2} - R_{1} = 50 mm

∴ F = 763\times \frac{\pi }{4}\times 250^{2}-217\times \frac{\pi }{4}\times 150^{2}

  F = 33618968.38 N --------(2)

Now comparing (1) and (2)

33618968.38 = 8252963901\times 50\times \omega ^{2}

∴ ω = 4036.61

We know

\omega = \frac{2\pi N}{60}

4036.61 = \frac{2\pi N}{60}

∴ N = 38546.82 rpm

7 0
3 years ago
A well is located in a 20.1-m thick confined aquifer with a conductivity of 14.9 m/day and a storativity of 0.0051. If the well
ahrayia [7]

Answer:

S = 5.7209 M

Explanation:

Given data:

B = 20.1 m

conductivity ( K ) = 14.9 m/day

Storativity  ( s ) = 0.0051

1 gpm = 5.451 m^3/day

calculate the Transmissibility ( T ) = K * B

                                                       = 14.9 * 20.1 = 299.5  m^2/day

Note :

t = 1

U = ( r^2* S ) / (4*T*<em> t </em>)

  = ( 7^2 * 0.0051 ) / ( 4 * 299.5 * 1 ) = 2.0859 * 10^-4

Applying the thesis method

W(u) = -0.5772 - In(U)

       = 7.9

next we calculate the pumping rate from well ( Q ) in m^3/day

= 500 * 5.451 m^3 /day

= 2725.5 m^3 /day

Finally calculate the drawdown at a distance of 7.0 m form the well after 1 day of pumping

S = \frac{Q}{4\pi T} * W (u)

 where : Q = 2725.5

               T = 299.5

               W(u)  = 7.9

substitute the given values into equation above

S = 5.7209 M

4 0
3 years ago
A) For Well A, provide a cross-section sketch that shows (i) ground elevation, (ii) casing height, (iii) depth to
Ad libitum [116K]
Don’t go on that file will give a virus! Sorry just looking out and I don’t know how to comment!
7 0
2 years ago
Explain how smart materials can be used by manufacturers to improve health and safety for children's products and goods.​
Ierofanga [76]

...simplify devices, reducing weight and the chance of failure.

6 0
1 year ago
An example of a transient analysis involving the 1st law of thermodynamics and conservation of mass is the filling of a compress
pickupchik [31]

Answer:

<em>The temperature will be greater than 25°C</em>

Explanation:

In an adiabatic process, heat is not transferred to or from the boundary of the system. The gain or loss of internal heat energy is solely from the work done on the system, or work done by the system. The work done on the system by the environment adds heat to the system, and work done by the system on its environment takes away heat from the system.

mathematically

Change in the internal energy of a system ΔU = ΔQ + ΔW

in an adiabatic process, ΔQ = 0

therefore

ΔU = ΔW

where ΔQ is the change in heat into the system

ΔW is the work done by or done on the system

when work is done on the system, it is conventionally negative, and vice versa.

also W = pΔv

where p is the pressure, and

Δv = change in volume of the system.

In this case,<em> work is done on the gas by compressing it from an initial volume to the new volume of the cylinder. The result is that the temperature of the gas will rise above the initial temperature of 25°C </em>

8 0
3 years ago
Other questions:
  • Write a complete C++ program that is made of functions main() and rShift(). The rShift() function must be a function without ret
    7·1 answer
  • Discuss four (4) advantages of direct and indirect water supply system.
    5·2 answers
  • In this type of projection, the angles between the three axes are different:- A) Isometric B) Axonometric C) Trimetric D) Dimetn
    11·1 answer
  • 100 kg of refrigerant-134a at 200 kPa iscontained in a piston-cylinder device whose volume is 12.322 m3. The piston is now moved
    14·1 answer
  • 6. What symptom will be exhibited on an engine equipped with a pneumatic governor system if the cooling fins
    14·1 answer
  • 1. Differentiate between speed and velocity.<br>​
    9·2 answers
  • The bulk density of a compacted soil specimen (Gs = 2.70) and its water content are 2060 kg/m^3 and 15.3%, respectively. If the
    5·1 answer
  • How do engineering and technology impact the natural world and environment
    6·1 answer
  • For heat transfer purposes, a standing man can be mod-eled as a 30-cm-diameter, 170-cm-long vertical cylinderwith both the top a
    11·1 answer
  • Pls answer and I will give a like!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!