Air supplied to a pneumatic system is supplied through the C. Actuator
Explanation
Pneumatic systems are like hydraulic systems, it is just that these systems uses compressed air rather than hydraulic fluid. Pneumatic systems are used widely across the industries. these pneumatic systems needs a constant supply of compressed air to operate. This is provided by an air compressor. The compressor sucks in air at a very high rate from the environment and stores it in a pressurized tank. the Air is supplied thereafter with the help of a actuator valve that is a more sophisticated form of a valve.
From the above statement it is clear that Air supplied to a pneumatic system is supplied through the Actuator
Answer:
Recognize that there is a moral dilemma.
Determine the actor. ...
Gather the relevant facts. ...
Test for right versus wrong issues. ...
Test for right versus right paradigms. ...
Apply the resolution principles. ...
Investigate the trilemma options. ...
Make the decision.
Answer:
14.52 minutes
<u>OR</u>
14 minutes and 31 seconds
Explanation:
Let's first start by mentioning the specific heat of air at constant volume. We consider constant volume and NOT constant pressure because the volume of the room remains constant while pressure may vary.
Specific heat at constant volume at 27°C = 0.718 kJ/kg*K
Initial temperature of room (in kelvin) = 283.15 K
Final temperature (required) of room = 293.15 K
Mass of air in room= volume * density= (4 * 5 * 7) * (1.204 kg/m3) = 168.56kg
Heat required at constant volume: 0.718 * (change in temp) * (mass of air)
Heat required = 0.718 * (293.15 - 283.15) * (168.56) = 1,210.26 kJ
Time taken for temperature rise: heat required / (rate of heat change)
Where rate of heat change = 10000 - 5000 = 5000 kJ/hr
Time taken = 1210.26 / 5000 = 0.24205 hours
Converted to minutes = 0.24205 * 60 = 14.52 minutes
Answer:
A.) Find the answer in the explanation
B.) Ua = 7.33 m/s , Vb = 7.73 m/s
C.) Impulse = 17.6 Ns
D.) 49%
Explanation:
Let Ua = initial velocity of the rod A
Ub = initial velocity of the rod B
Va = final velocity of the rod A
Vb = final velocity of the rod B
Ma = mass of rod A
Mb = mass of rod B
Given that
Ma = 2kg
Mb = 1kg
Ub = 3 m/s
Va = 0
e = restitution coefficient = 0.65
The general expression for the velocities of the two rods after impact will be achieved by considering the conservation of linear momentum.
Please find the attached files for the solution
Answer:
both statement is correct
Explanation:
Flywheel engine uses to reduce fluctuations.
And
FlexPlate is a metal disk that connects the output from the engine to the input of the torque converter. This will replace the flywheel
so that both statement is correct