the mix number would be 1 and 1/15 and the improper fraction would be 16/15. 2 and 2/3 into a improper fraction and multiply it by 2/5 equals you answer.
Answer:
Abby is the answer
Step-by-step explanation:
When you calculate Abby’s free throws you should realize
40 - 36 = 4
However with Alex’s free throws you calculate
60 - 54 = 6
When you compare the two Abby has a higher percentage of attempts because she was more successfu!
Answer:
p ∈ IR - {6}
Step-by-step explanation:
The set of all linear combination of two vectors ''u'' and ''v'' that belong to R2
is all R2 ⇔
And also u and v must be linearly independent.
In order to achieve the final condition, we can make a matrix that belongs to
using the vectors ''u'' and ''v'' to form its columns, and next calculate the determinant. Finally, we will need that this determinant must be different to zero.
Let's make the matrix :
![A=\left[\begin{array}{cc}3&1&p&2\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%261%26p%262%5Cend%7Barray%7D%5Cright%5D)
We used the first vector ''u'' as the first column of the matrix A
We used the second vector ''v'' as the second column of the matrix A
The determinant of the matrix ''A'' is

We need this determinant to be different to zero


The only restriction in order to the set of all linear combination of ''u'' and ''v'' to be R2 is that 
We can write : p ∈ IR - {6}
Notice that is
⇒


If we write
, the vectors ''u'' and ''v'' wouldn't be linearly independent and therefore the set of all linear combination of ''u'' and ''b'' wouldn't be R2.