It is 12 because there are 180 degrees in a set of supplementary angles and 12 times 10 equals 120, plus 60 equals 180.
Answer:
(x + 2)(4x - 2).
Step-by-step explanation:
(x+2)(2x+1)+(x+2)(2x-3)
Note that (x + 2) is common to 2 parts of the expression. So we have:
(x + 2)(2x + 1 + 2x - 3)
= Ix + 2)(4x - 2)
The correct anwer is option C and option E which are √4<√5<√√55 and √8<2.9<√√9.
<h3>What is inequality?</h3>
Inequality is the relationship between two expressions that are not equal, employing a sign such as ≠ “not equal to,” > “greater than,” or < “less than.”.
The two inequalities √4<√5<√√55 and √8<2.9<√√9. are true.
√4<√5<√√55 → 2 < 2.23 < 7.41
√8<2.9<√√9 → 2.82 < 2.9 < 3
Therefore correct answers is option C and option E which are √4<√5<√√55 and √8<2.9<√√9.
To know more about inequality follow
brainly.com/question/24372553
#SPJ1
The answer to the question is
Complete Question:
A population proportion is 0.4. A sample of size 200 will be taken and the sample proportion p will be used to estimate the population proportion. Use z- table Round your answers to four decimal places. Do not round intermediate calculations. a. What is the probability that the sample proportion will be within ±0.03 of the population proportion? b. What is the probability that the sample proportion will be within ±0.08 of the population proportion?
Answer:
A) 0.61351
Step-by-step explanation:
Sample proportion = 0.4
Sample population = 200
A.) proprobaility that sample proportion 'p' is within ±0.03 of population proportion
Statistically:
P(0.4-0.03<p<0.4+0.03)
P[((0.4-0.03)-0.4)/√((0.4)(.6))/200 < z < ((0.4+0.03)-0.4)/√((0.4)(.6))/200
P[-0.03/0.0346410 < z < 0.03/0.0346410
P(−0.866025 < z < 0.866025)
P(z < - 0.8660) - P(z < 0.8660)
0.80675 - 0.19325
= 0.61351
B) proprobaility that sample proportion 'p' is within ±0.08 of population proportion
Statistically:
P(0.4-0.08<p<0.4+0.08)
P[((0.4-0.08)-0.4)/√((0.4)(.6))/200 < z < ((0.4+0.08)-0.4)/√((0.4)(.6))/200
P[-0.08/0.0346410 < z < 0.08/0.0346410
P(−2.3094 < z < 2.3094)
P(z < -2.3094 ) - P(z < 2.3094)
0.98954 - 0.010461
= 0.97908