Answer:
The probability that the sample mean will lie within 2 values of μ is 0.9544.
Step-by-step explanation:
Here
- the sample size is given as 100
- the standard deviation is 10
The probability that the sample mean lies with 2 of the value of μ is given as

Here converting the values in z form gives

Substituting values

From z table

So the probability that the sample mean will lie within 2 values of μ is 0.9544.
Remark
This question likely should be done before the other one. What you are trying to do is give C a value. So you need to remember that C is always part of an indefinite integral.
y =

y = sin(x) - cos(x) + C
y(π) = sin(π) - cos(π) + C = 0
y(π) = 0 -(-1) + C = 0
y(π) = 1 + C = 0
C = - 1
y = sin(x) - cos(x) - 1 <<<<< AnswerProblem Two
Remember that

y( - e^3 ) = ln(|x|) + C = 0
y(-e^3) = ln(|-e^3|) + C = 0
y(-e^3) = 3 + C = 0
3 + C = 0
C = - 3
y = ln(|x|) - 3 <<<< Answer
Answer:
5
Step-by-step explanation:
u do 2x2 cuz of the square root and add the 1
The main factor when x values are high is the nature of the function. For example, polynomial functions intrinsically grow slower than exponential functions when x is high. Also, the greater the degree of the polynomial, the more the function grows in absolute value as x goes to very large values.
In specific, this means that our 2 exponential functions grow faster than all the other functions (which are polynomial) and thus they take up the last seats. Also, 7^x grows slower than 8^x because the base is lower. Hence, the last is 8^x+3, the second to last is 7^x.
Now, we have that a polynomial of 2nd degree curves upwards faster than a linear polynomial when x is large. Hence, we have that the two 2nd degree polynomials will be growing faster than the 2 linear ones and hence we get that they fill in the middle boxes. Because x^2+4>x^2, we have that x^2+4 is the 4th from the top and x^2 is the 3rd from the top.
Finally, we need to check which of the remaining functions is larger. Now, 5x+3 is larger than 5x, so it goes to the 2nd box. Now we are done.
Answer:
A math diagram is any diagram that conveys mathematical concepts. This includes basic charts and graphs as well as sophisticated logic and geometrical diagrams. ... Mathematical diagrams are often created to illustrate concepts in textbooks or for presentation posters used at conferences.
Step-by-step explanation: