Answer:
Explanation:
For entry of light into tube of unknown refractive index
sin ( 90 - 25 ) / sinr = μ , μ is the refractive index of the tube , r is angle of refraction in the medium of tube
r = 90 - C where C is critical angle between μ and body medium in which tube will be inserted.
sin ( 90 - 25 ) / sin( 90 - C) = μ
sin65 / cos C = μ
sinC = 1.33 / μ , where 1.33 is the refractive index of body liquid.
From these equations
sin65 / cos C = 1.33 / sinC
TanC = 1.33 / sin65
TanC = 1.33 / .9063
TanC = 1.4675
C= 56°
sinC = 1.33 / μ
μ = 1.33 / sinC
= 1.33 / sin56
= 1.33 / .829
μ = 1.6 Ans
Answer:
The answer is compound
Explanation:
heterogeneous mixture is wronggggg
Answer:
Explanation:
The frequency is 16.0 Hz. That means that 16 of these waves can pass a single point in 1 second. We are given frequency and wavelength. The equation that relates them is
where f is frequency, v is velocity, and λ is wavelength. Putting all this together:
and solving for velocity,
v = 16.0(97.5) so
v = 1560 m/s. This wave can travel 1560 meters in a single second!!! Now that we know this velocity, we can use it in a proportion to find our unknown, which is how long, t, it will take to hear this sound 11000m away. (11 km is 11000m):
and cross multiply to get
1560t = 11000 so
t = 7.1 seconds
The sound wave never actually loses energy, the bulk of energy it had at the beginning of the sound, is spread out into a sphere, making it decrease in amplitude and frequency.