Answer:B) Going Down
Explanation:
The higher the concentration of hydro in ions in a solution, the more acidic it is, and the lower the pH is.
(I just answered the question on USA TP!)
Due to the law of conservation of mass, _g K + 16g O=94g KO.
So, 94-16=78
78 is your answer
<u>Answer:</u> The amount of heat released when 0.211 moles of
reacts is 554.8 kJ
<u>Explanation:</u>
The chemical equation for the reaction of
with oxygen gas follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(5\times \Delta H_f_{(B_2O_3(s))})+(9\times \Delta H_f_{(H_2O(l))})]-[(2\times \Delta H_f_{(B_5H_9(l))})+(12\times \Delta H_f_{(O_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%285%5Ctimes%20%5CDelta%20H_f_%7B%28B_2O_3%28s%29%29%7D%29%2B%289%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28l%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28B_5H_9%28l%29%29%7D%29%2B%2812%5Ctimes%20%5CDelta%20H_f_%7B%28O_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(2\times (-1272))+(9\times (-285.4))]-[(2\times (73.2))+(12\times (0))]\\\\\Delta H_{rxn}=-5259kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-1272%29%29%2B%289%5Ctimes%20%28-285.4%29%29%5D-%5B%282%5Ctimes%20%2873.2%29%29%2B%2812%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-5259kJ)
To calculate the amount of heat released for the given amount of
, we use unitary method, we get:
When 2 moles of
reacts, the amount of heat released is 5259 kJ
So, when 0.211 moles of
will react, the amount of heat released will be = 
Hence, the amount of heat released when 0.211 moles of
reacts is 554.8 kJ
According to Arrhenius theory, acid is a substance that releases H⁺ ions when dissolved in water.
In order to apply this theory, the substance must be soluble in water.
H₂SO₄ is highly soluble in water. It undergoes following dissociation reaction when dissolved in water.

From the above equation, we can see that H₂SO₄ forms 2 H⁺ ions when dissolved in water. Therefore it behaves as an acid according to Arrhenius theory.