Answer:
minimum frequency = 170 Hz
Explanation:
given data
One path long = 20 m
second path long = 21 m
speed of sound = 340 m/s
solution
we get here destructive phase that is path difference of minimum
here λ is the wavelength of the wave
so path difference will be
21 - 20 =
λ = 2 m
and
velocity that is express as
velocity = frequency × wavelength .............1
frequency =
minimum frequency = 170 Hz
Answer:
I = I₀ + M(L/2)²
Explanation:
Given that the moment of inertia of a thin uniform rod of mass M and length L about an Axis perpendicular to the rod through its Centre is I₀.
The parallel axis theorem for moment of inertia states that the moment of inertia of a body about an axis passing through the centre of mass is equal to the sum of the moment of inertia of the body about an axis passing through the centre of mass and the product of mass and the square of the distance between the two axes.
The moment of inertia of the body about an axis passing through the centre of mass is given to be I₀
The distance between the two axes is L/2 (total length of the rod divided by 2
From the parallel axis theorem we have
I = I₀ + M(L/2)²
This question is poorly stated, but I assume you mean what conditions are needed. It would have to be cold outside, correct?
Answer:
Part a)

Part B)

Part C)

Explanation:
Part a)
Magnetic field due to a long ideal solenoid is given by

n = number of turns per unit length



now we know that magnetic field due to solenoid is


Now magnetic flux due to this magnetic field is given by




Part B)
Now for mutual inductance we know that




now we have


Part C)
As we know that induced EMF is given as


