Answer:
v₂=- 34 .85 m/s
v₁=0.14 m/s
Explanation:
Given that
m₁=70 kg ,u₁=0 m/s
m₂=0.15 kg ,u₂=35 m/s
Given that collision is elastic .We know that for elastic collision
Lets take their final speed is v₁ and v₂
From momentum conservation
m₁u₁+m₂u₂=m₁v₁+m₂v₂
70 x 0+ 0.15 x 35 = 70 x v₁ + 0.15 x v₂
70 x v₁ + 0.15 x v₂=5.25 --------1
v₂-v₁=u₁-u₂ ( e= 1)
v₂-v₁ = -35 --------2
By solving above equations
v₂=- 34 .85 m/s
v₁=0.14 m/s
(a) 1200 rad/s
The angular acceleration of the rotor is given by:

where we have
is the angular acceleration (negative since the rotor is slowing down)
is the final angular speed
is the initial angular speed
t = 10.0 s is the time interval
Solving for
, we find the final angular speed after 10.0 s:

(b) 25 s
We can calculate the time needed for the rotor to come to rest, by using again the same formula:

If we re-arrange it for t, we get:

where here we have
is the initial angular speed
is the final angular speed
is the angular acceleration
Solving the equation,

Answer:
The maximum potential difference is 186.02 x 10¹⁵ V
Explanation:
formula for calculating maximum potential difference

where;
Ke is coulomb's constant = 8.99 x 10⁹ Nm²/c²
k is the dielectric constant = 2.3
b is the outer radius of the conductor = 3 mm
a is the inner radius of the conductor = 0.8 mm
λ is the linear charge density = 18 x 10⁶ V/m
Substitute in these values in the above equation;

Therefore, the maximum potential difference this cable can withstand is 186.02 x 10¹⁵ V
Answer:
Cd(NO3)2 + Na2S --> CdS + 2 NaNO3
Explanation: