Answer:
Solution
verified
Verified by Toppr
Given:
Mass of body = 30 kg
gravitational acceleration on the moon = 1.62 m/s
2
Weight of the body on the moon = Mass of the body×gravitational acceleration on the moon=30×1.62=48 N
Answer:
incurriculum design process the answer is designs
Explanation:
It is given that,
Spring constant, k = 81 N/m
We need to find the force required to :
(a) Compress the spring by 6 cm i.e. x₁ = 6 cm = -0.06 m
It can be calculated using Hooke's law as :
F = - k(-x₁)

F = 4.86 N
(b) Expand the spring by 17 cm i.e. x₂ = 17 cm = +0.17 m
So, F = -kx₂

F = -13.77 N
Hence, this is the required solution.
Answer:
2.74 × 10^33 J
Explanation:
the formula to calculate kinetic energy is:
1/2mv²
m= mass (kg)
v= velocity (m/s)
given that,
m = 5.97 × 10^24
v = 30.29 km s-1
= 30290 m s-1
1/2× 5.97 × 10^24 × 30290²
=2.74 × 10^33 J