Answer:
340 m/s
Solution:
As per the question;
Time, t = 3.0 s
Total distance moved by the ship, d = 10,500 km
The increase in speed, v = 340 m/s
Now,
To calculate the U.S.S Burger's change in speed,
:
The final velocity is given by:
(1)
where


Also, the change in velocity is given by:
(2)
Now, from eqn (1) and (2):

(520 lm) divided by (13 lm/W)
= (520 lm) times (W/13lm)
= (520/13) (lm · W / lm)
= 40 W
This sequence refer to how neurons send messages electrochemically. When the neurons are at rest, they are at its resting potential at -70 millivolts. If the neurons in the brain send messages, a spike would occur until it reaches the threshold potential at -55 mV. If it reaches the threshold potential, then an action potential occurs.Hence, the sequence would be letter C.
Answer:
(A) Work done will be 87.992 KJ
(B) Work done will be 167.4 KJ
Explanation:
We have given mass of methane m = 4.5 gram = 0.0045 kg
Volume occupies 
And volume is increased by
so 
Temperature T = 310 K
Pressure is given as 200 Torr = 26664.5 Pa
(a) At constant pressure work done is given by

(b) At reversible process work done is given by 
We have given mass = 4.5 gram
Molar mass of methane = 16
So number of moles 
So work done 
Answer:
7 m/s^2
Explanation:
Given that the jet is traveling 37.6 m/s when the pilot receives the message.
And it takes the pilot 5.37 s to bring the plane to a halt.
Acceleration of the plane can be calculated by using first equation of motion
V = U - at
Since the plane is going to stop, the final velocity V = zero.
And the acceleration will be negative
Substitute all the parameters into the formula
0 = 37.6 - 5.37a
5.37a = 37.6
Make a the subject of formula
a = 37.6 / 5.37
a = 7.0 m/s^2
Therefore, the acceleration of the plane to bring the plane to a halt is 7 m/s^2