Answer:

Explanation:
z = number of atoms
M = Molar mass of zirconium
N = Avogadro’s number
Vc = volume of zirconium unit cell
d = density

z = 6 atoms per unit cell
M = 91.224 g/mol
N = 
d = 




Answer: Dampness or moisture introduces hydrogen into the weld, which causes cracking when some metals are welded.
Explanation:
<em>This moisture (hydrogen) is a major cause of weld cracking and porosity. </em>
Answer:
modulus =3.97X10^6 Ib/in^2, Poisson's ratio = 0.048
Explanation:
Modulus is the ratio of tensile stress to tensile strain
Poisson's ratio is the ratio of transverse contraction strain to longitudinal extension strain within the direction of the stretching force
And contraction occur from 0.6 in x 0.6 in to 0.599 in x 0.599 in while 2 in extended to 2.007, with extension of 0.007 in
Answer:
The given grammar is :
S = T V ;
V = C X
X = , V | ε
T = float | double
C = z | w
1.
Nullable variables are the variables which generate ε ( epsilon ) after one or more steps.
From the given grammar,
Nullable variable is X as it generates ε ( epsilon ) in the production rule : X -> ε.
No other variables generate variable X or ε.
So, only variable X is nullable.
2.
First of nullable variable X is First (X ) = , and ε (epsilon).
L.H.S.
The first of other varibles are :
First (S) = {float, double }
First (T) = {float, double }
First (V) = {z, w}
First (C) = {z, w}
R.H.S.
First (T V ; ) = {float, double }
First ( C X ) = {z, w}
First (, V) = ,
First ( ε ) = ε
First (float) = float
First (double) = double
First (z) = z
First (w) = w
3.
Follow of nullable variable X is Follow (V).
Follow (S) = $
Follow (T) = {z, w}
Follow (V) = ;
Follow (X) = Follow (V) = ;
Follow (C) = , and ;
Explanation:
Answer:
The strength coefficient is K = 591.87 MPa
Explanation:
We can calculate the strength coefficient using the equation that relates the tensile strength with the strain hardening index given by

where Sut is the tensile strength, K is the strength coefficient we need to find and n is the strain hardening index.
Solving for strength coefficient
From the strain hardening equation we can solve for K

And we can replace values

Thus we get that the strength coefficient is K = 591.87 MPa