1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IgorC [24]
3 years ago
7

How many astronauts work in the International Space Station

Engineering
1 answer:
laila [671]3 years ago
4 0

Answer:

At the moment there are three astronauts working in the international space station.

Explanation:

The space station is as large as a U.S football field and is typically occupied by at least three astronauts and a maximum of six astronauts.

You might be interested in
Two production methods are being compared. One manual and the other automated. The manual method produces 10 pc per hour and req
Genrish500 [490]

Answer:

Check the explanation

Explanation:

Kindly check the attached image below to see the step by step explanation to the question above.

6 0
3 years ago
What is an example of a product made of textile?
Otrada [13]

beach \: towel \\  \\ hope \: it \: helps

4 0
2 years ago
A flow rate sensing device used on a liquid transport pipeline functions as follows. The device provides a 5-bit output where al
marysya [2.9K]

Answer:

Explanation:

The step by step analysis is as shown in the attached files.

8 0
3 years ago
A European car manufacturer reports that the fuel efficiency of the new MicroCar is 48.5 km/L highway and 42.0 km/L city. What a
statuscvo [17]

Answer:

Fuel efficiency for highway = 114.08 miles/gallon

Fuel efficiency for city = 98.79 miles/gallon

Explanation:

1 gallon = 3.7854 litres

1 mile = 1.6093 km

Let's first convert the efficiency to km/gallon:

48.5 km/litre = (48.5 * 3.7854) km/gallon

48.5 km/litre =  183.5919 km/gallon (highway)

42.0 km/litre = (42.0 * 3.7854) km/gallon

42.0 km/litre = 158.9868 km/gallon (city)

Next, we convert these to miles/gallon:

183.5919 km/gallon = (183.5919 / 1.6093) miles/gallon

183.5919 km/gallon = 114.08 miles/gallon (highway)

158.9868 km/gallon = (158.9868 /1.6093) miles/gallon

158.9868 km/gallon = 98.79 miles/gallon (city)

3 0
3 years ago
For a cylindrical annulus whose inner and outer surfaces are maintained at 30 ºC and 40 ºC, respectively, a heat flux sensor mea
miskamm [114]

Answer:

k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

where r_1 and r_2 be the inner radius, outer radius of the annalus.

Explanation:

Let r_1, r_2 and L be the inner radius, outer radius and length of the given annulus.

Temperatures at the inner surface, T_1=30^{\circ}C\\ and at the outer surface, T_2=40^{\circ}C.

Let q be the rate of heat transfer at the steady-state.

Given that, the heat flux at r=3cm=0.03m is

40 W/m^2.

\Rightarrow \frac{q}{(2\pi\times0.03\times L)}=40

\Rightarrow q=2.4\pi L \;W

This heat transfer is same for any radial position in the annalus.

Here, heat transfer is taking placfenly in radial direction, so this is case of one dimentional conduction, hence Fourier's law of conduction is applicable.

Now, according to Fourier's law:

q=-kA\frac{dT}{dr}\;\cdots(i)

where,

K=Thermal conductivity of the material.

T= temperature at any radial distance r.

A=Area through which heat transfer is taking place.

Here, A=2\pi rL\;\cdots(ii)

Variation of temperature w.r.t the radius of the annalus is

\frac {T-T_1}{T_2-T_1}=\frac{\ln(r/r_1)}{\ln(r_2/r_1)}

\Rightarrow \frac{dT}{dr}=\frac{T_2-T_1}{\ln(r_2/r_1)}\times \frac{1}{r}\;\cdots(iii)

Putting the values from the equations (ii) and (iii) in the equation (i), we have

q=\frac{2\pi kL(T_1-T_2)}{\LN(R_2/2_1)}

\Rightarrow k= \frac{q\ln(r_2/r_1)}{2\pi L(T_2-T_1)}

\Rightarrow k=\frac{(2.4\pi L)\ln(r_2/r_1)}{2\pi L(10)} [as q=2.4\pi L, and T_2-T_1=10 ^{\circ}C]

\Rightarrow k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

This is the required expression of k. By putting the value of inner and outer radii, the thermal conductivity of the material can be determined.

7 0
3 years ago
Other questions:
  • For each of the following stacking sequences found in FCC metals, cite the type of planar defect that exists:
    7·1 answer
  • You have just finished your OST takeoffs for a single-story home and found 175 LF of interior walls with 2x6 studs 14" OC. The h
    14·1 answer
  • Polymer ropes and lines for use on water are often designed to float, to aid in their retrieval and to avoid applying a downward
    6·1 answer
  • What must you do if hauling a load of material which could fall or blow onto the roadway?
    14·1 answer
  • At a festival, spherical balloons with a radius of 140.cm are to be inflated with hot air and released. The air at the festival
    10·1 answer
  • A car is traveling at 50 ft/s when the driver notices a stop sign 100 ft ahead and steps on the brake. Assuming that the deceler
    6·1 answer
  • PLEASE HELP ME!!!!!! 100 POINTS FOR HELPFUL ANSWERS + BRAINLIEST!!!!!
    14·2 answers
  • When the rod is circular, radial lines remain straight and sections perpendicular to the axis do not warp. In this case, the str
    11·1 answer
  • Sawzall® is another term commonly applied to?
    12·1 answer
  • How much does it cost to replace a roof on a 2,200 square foot house.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!