Explanation:
First of all get the input from the user, number of rows and number of columns where rows represents seat digit number and column represents the seat letter
rows is initialized to 1 to ensure that row starts at 1 or you can remove it then seat number will start from 0.
The first loop is used for digits starting from 1 to number of rows
The second loop is used for letters starting from 1 to number of columns
since rows and cols are not of the same type that's why we are converting the int type to string type
print(str(rows)+cols) counter will keep updating the columns A, B, C.....
rows= rows + 1 counter will keep updating the rows 1, 2, 3....
Code:
Please refer to the attached image.
Output:
Please enter the number of rows: 2
Please enter the number of columns: 3
1A
1B
1C
2A
2B
2C
Answer:
Auguste Comte was the first to develop the concept of "sociology." He defined sociology as a positive science. Positivism is the search for "invariant laws of the natural and social world." Comte identified three basic methods for discovering these invariant laws, observation, experimentation, and comparison.
Explanation:
I hope it's help u :)
Answer:
33.56 ft^3/sec.in
Explanation:
Duration = 6 hours
drainage area = 185 mi^2
constant baseflow = 550 cfs
<u>Derive the unit hydrograph using the inverse procedure </u>
first step : calculate for the volume of direct runoff hydrograph using the details in table 2 attached below
Vdrh = sum of drh * duration
= 29700 * 6 hours ( 216000 secs )
= 641,520,000 ft^3.
next step : Calculate the volume of runoff in equivalent depth
Vdrh / Area = 641,520,000 / 185 mi^2
= 1.49 in
Finally derive the unit hydrograph
Unit of hydrograph = drh / volume of runoff in equivalent depth
= 50 ft^3 / 1.49 in = 33.56 ft^3/sec.in
Answer:
32000 bits/seconds
Explanation:
Given that :
there are 16 signal combinations (states) = 2⁴
bits n = 4
and a baud rate (number of signals/second) = 8000/second
Therefore; the number of bits per seconds can be calculated as follows:
Number of bits per seconds = bits n × number of signal per seconds
Number of bits per seconds = 4 × 8000/second
Number of bits per seconds = 32000 bits/seconds
C. seems like the best answer. i may be wrong so don’t quote me on that