1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nika2105 [10]
3 years ago
7

Pls someone I need it urgently and explain Solving and explanation so I can understand Thank you

Physics
1 answer:
Temka [501]3 years ago
4 0

Answer:

   f = 6.37 Hz,       T = 0.157 s

Explanation:

The expression you have is

       y = 5 sin (3x - 40t)

this is the equation of a traveling wave, the general form of the expression is

      y = A sin (kx - wt)

where A is the amplitude of the motion, k the wave vector and w the angular velocity

Angle velocity and frequency are related

         w = 2π f

         f = w / 2π

from the equation w = 40 rad / s

        f = 40 / 2π

        f = 6.37 Hz

frequency and period are related

       f = 1 / T

       T = 1 / f

       T = 1 / 6.37

       T = 0.157 s

You might be interested in
A car at the top of a roller coaster and an apple in a tree both have potential energy. True False
amm1812
The statement is true.
6 0
3 years ago
Read 2 more answers
Who is the president of Africa
defon
Currently, the president of Africa is Jacob Gedleyihlekisa Zuma.
8 0
2 years ago
Read 2 more answers
The maximum distance from the Earth to the Sun (at aphelion) is 1.521 1011 m, and the distance of closest approach (at perihelio
LUCKY_DIMON [66]

Answer:

29274.93096 m/s

2.73966\times 10^{33}\ J

-5.39323\times 10^{33}\ J

2.56249\times 10^{33}\ J

-5.21594\times 10^{33}

Explanation:

r_p = Distance at perihelion = 1.471\times 10^{11}\ m

r_a = Distance at aphelion = 1.521\times 10^{11}\ m

v_p = Velocity at perihelion = 3.027\times 10^{4}\ m/s

v_a = Velocity at aphelion

m = Mass of the Earth =  5.98 × 10²⁴ kg

M = Mass of Sun = 1.9889\times 10^{30}\ kg

Here, the angular momentum is conserved

L_p=L_a\\\Rightarrow r_pv_p=r_av_a\\\Rightarrow v_a=\frac{r_pv_p}{r_a}\\\Rightarrow v_a=\frac{1.471\times 10^{11}\times 3.027\times 10^{4}}{1.521\times 10^{11}}\\\Rightarrow v_a=29274.93096\ m/s

Earth's orbital speed at aphelion is 29274.93096 m/s

Kinetic energy is given by

K=\frac{1}{2}mv_p^2\\\Rightarrow K=\frac{1}{2}\times 5.98\times 10^{24}(3.027\times 10^{4})^2\\\Rightarrow K=2.73966\times 10^{33}\ J

Kinetic energy at perihelion is 2.73966\times 10^{33}\ J

Potential energy is given by

P=-\frac{GMm}{r_p}\\\Rightarrow P=-\frac{6.67\times 10^{-11}\times 1.989\times 10^{30}\times 5.98\times 10^{24}}{1.471\times  10^{11}}\\\Rightarrow P=-5.39323\times 10^{33}

Potential energy at perihelion is -5.39323\times 10^{33}\ J

K=\frac{1}{2}mv_a^2\\\Rightarrow K=\frac{1}{2}\times 5.98\times 10^{24}(29274.93096)^2\\\Rightarrow K=2.56249\times 10^{33}\ J

Kinetic energy at aphelion is 2.56249\times 10^{33}\ J

Potential energy is given by

P=-\frac{GMm}{r_a}\\\Rightarrow P=-\frac{6.67\times 10^{-11}\times 1.989\times 10^{30}\times 5.98\times 10^{24}}{1.521\times 10^{11}}\\\Rightarrow P=-5.21594\times 10^{33}

Potential energy at aphelion is -5.21594\times 10^{33}\ J

6 0
3 years ago
A car has a mass of 1000 kg. What is the acceleration produced by a force of 2000 N?
EastWind [94]
F=ma
a=F/m
a=2000/1000
a=2 m/s^2
6 0
2 years ago
Light striking a metal surface causes electrons to be emitted from the metal via the photoelectric effect.In a particular experi
ANEK [815]

The number of electrons emitted from the metal per second increases if the intensity of the incident light is increased.

Answer: Option B

<u>Explanation:</u>

As a result of photoelectric effect, electrons are emitted by the light incident on a metal surface. The emitted electrons count and its kinetic energy can measure as the function of light intensity and frequency. Like physicists, at the 20th century beginning, it should be expected that the light wave's energy (its intensity) will be transformed into the kinetic energy of emitted electrons.

In addition, the electrons count emitting from metal must vary with light wave frequency. This frequency relationship was expected because the electric field oscillates due to the light wave and the metal electrons react to different frequencies. In other words, the number of electrons emitted was expected to be frequency dependent and their kinetic energy should be dependent on the intensity (constant wavelength) of light.

Thus, the maximum in kinetic energy of electrons emitted increases with increase in light's frequency and is experimentally independent of light intensity. So, the number of emitted electrons is proportionate to the intensity of the incident light.

5 0
3 years ago
Other questions:
  • following statement supports which theory? "Astronomers have observed protoplanetary disks around distant newborn stars." Big Ba
    8·2 answers
  • I have to get this done today 
    8·1 answer
  • The same amount of substance was added to four beakers of water. The treatments were placed in the chart.
    11·2 answers
  • A 625 kg sailboat moves with a momentum of 13,200 kg•m/s what is the velocity of the sailboat
    9·1 answer
  • Lightning results from ________.
    15·1 answer
  • How are rainbows formed? Please explain.
    13·2 answers
  • The visible light spectrum ranges between
    15·2 answers
  • Help uhh i need to know this answer
    12·1 answer
  • The initial momentum of a system is measured at 300 kg•m/s. Afterwards, the
    10·1 answer
  • List each of the parts of the electromagnetic spectrum in order of lowest to highest frequency. Write down one use for each one,
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!