Answer:
The one with highest velocity
Explanation:
The momentum of an object is given by

where
m is the mass of the car
v is the velocity of the car
In this problem, we have two identical cars: identical means they have same mass, so

The momentum of car 1 is

while the momentum of car 2 is

By comparing the two expressions, we see that the car with greatest momentum is the one with highest velocity, since the mass is the same.
Answer:
<em>The flux through the sphere will remain the same, and the magnitude of the electric field will increase by four times.</em>
Explanation:
The electric flux is the number of electric field, passing through a given area. It is proportional to the electric field strength and the area through which this field passes.
If the radius of the sphere is halved, the area of the sphere will reduce by square of the reduction, which will be four times. The electric field lines will become closer together, or technically increase by a fourth of its initial value. The resultant effect is that the electric flux will remain the same.
If originally,
Φ = EA cos∅
where Φ is the electric flux through the sphere
E is the electric field on the sphere
A is the area of the sphere.
If the area of the sphere is reduced to half, then,
the area reduces to A/4,
and the electric field increases to be 4E on the sphere.
The flux now becomes
Φ = 4E x A/4 cos∅
which reduces to
Φ = EA cos∅
which is the initial electric flux on the sphere.
Answer: 0.55 m/s
Explanation:
This situation is related to projectile motion (also called parabolic motion), where the main equations are as follows:
(1)
(2)
Where:
is the horizontal displacement of the pencil
is the pencil's initial velocity
since we are told the pencil rolls <u>horizontally</u> before falling
is the time since the pencil falls until it hits the ground
is the initial height of the pencil
is the final height of the pencil (when it finally hits the ground)
is the acceleration due gravity, always acting vertically downwards
Begining with (1):
(3)
(4)
Finding
from (2):
(5)
(6)
Substituting (6) in (4):
(7)
Isolating
:
(8)
(9)
Finally:
bobo mag isip ayaw mag aral bobi
Explanation:
bobo ka boboboboboob
Answer:
Interchanging the poles of the magnet
Reversing the direction of the applied current
Explanation:
- The working of the electric motor is associated with Fleming's left-hand rule.
- It states that if a current-carrying conductor is placed inside a magnetic field, it experiences a force in the direction perpendicular to the direction of the electric current and magnetic field.
- These three physical quantities are placed in a mutually perpendicular direction.
- So, in order to reverse the direction of force, you have to either change the direction of the current or magnetic field.