1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodomira [7]
2 years ago
6

How to find a planet’s gravitational field strength using its radius?

Physics
1 answer:
grin007 [14]2 years ago
5 0

The gravitational field strength is approximately equal to 10 N.

<u>Explanation:</u>

Gravitational field strength is the measure of gravitational force acting on any object placed on the surface of the planet. Generally, the mass of the object is considered as 1 kg.

So the gravitational field strength will be equal to the gravitational force acting on the object.

The formula for gravitational field strength is

g = \frac{F}{m}

Here g is the gravitational field strength, m is the mass of the object placed on the surface and F is the gravitational force acting on the object.

Since, the mass of any object placed on the surface of earth will be negligible compared to the mass of Earth, so the mass of the object is considered as 1 kg.

Then the g = F

And F =\frac{GMm}{r^{2} }

Here G is the gravitational constant, M is the mass of Earth and m is the mass of the object placed on the surface, while r is the radius of the Earth.

g = F = \frac{6 \times 10^{24} \times 6.67 \times 10^{-11}  \times 1}{(6.6 \times 10^{6}) ^{2} }

g = 0.977 \times 10^1= 9.77\ N

So, the gravitational field strength is approximately equal to 10 N.

You might be interested in
A Tennis ball falls from a height 40m above the ground the ball rebounds
worty [1.4K]

If the ball is dropped with no initial velocity, then its velocity <em>v</em> at time <em>t</em> before it hits the ground is

<em>v</em> = -<em>g t</em>

where <em>g</em> = 9.80 m/s² is the magnitude of acceleration due to gravity.

Its height <em>y</em> is

<em>y</em> = 40 m - 1/2 <em>g</em> <em>t</em>²

The ball is dropped from a 40 m height, so that it takes

0 = 40 m - 1/2 <em>g</em> <em>t</em>²

==>  <em>t</em> = √(80/<em>g</em>) s ≈ 2.86 s

for it to reach the ground, after which time it attains a velocity of

<em>v</em> = -<em>g</em> (√(80/<em>g</em>) s)

==>  <em>v</em> = -√(80<em>g</em>) m/s ≈ -28.0 m/s

During the next bounce, the ball's speed is halved, so its height is given by

<em>y</em> = (14 m/s) <em>t</em> - 1/2 <em>g</em> <em>t</em>²

Solve <em>y</em> = 0 for <em>t</em> to see how long it's airborne during this bounce:

0 = (14 m/s) <em>t</em> - 1/2 <em>g</em> <em>t</em>²

0 = <em>t</em> (14 m/s - 1/2 <em>g</em> <em>t</em>)

==>  <em>t</em> = 28/<em>g</em> s ≈ 2.86 s

So the ball completes 2 bounces within approximately 5.72 s, which means that after 5 s the ball has a height of

<em>y</em> = (14 m/s) (5 s - 2.86 s) - 1/2 <em>g</em> (5 s - 2.86 s)²

==>  (i) <em>y</em> ≈ 7.5 m

(ii) The ball will technically keep bouncing forever, since the speed of the ball is only getting halved each time it bounces. But <em>y</em> will converge to 0 as <em>t</em> gets arbitrarily larger. We can't realistically answer this question without being given some threshold for deciding when the ball is perfectly still.

During the first bounce, the ball starts with velocity 14 m/s, so the second bounce begins with 7 m/s, and the third with 3.5 m/s. The ball's height during this bounce is

<em>y</em> = (3.5 m/s) <em>t</em> - 1/2 <em>g</em> <em>t</em>²

Solve <em>y</em> = 0 for <em>t</em> :

0 = (3.5 m/s) <em>t</em> - 1/2 <em>g t</em>²

0 = <em>t</em> (3.5 m/s - 1/2 <em>g</em> <em>t</em>)

==>  (iii) <em>t</em> = 7/<em>g</em> m/s ≈ 0.714 s

As we showed earlier, the ball is in the air for 2.86 s before hitting the ground for the first time, then in the air for another 2.86 s (total 5.72 s) before bouncing a second time. At the point, the ball starts with an initial velocity of 7 m/s, so its velocity at time <em>t</em> after 5.72 s (but before reaching the ground again) would be

<em>v</em> = 7 m/s - <em>g t</em>

At 6 s, the ball has velocity

(iv) <em>v</em> = 7 m/s - <em>g</em> (6 s - 5.72 s) ≈ 4.26 m/s

4 0
3 years ago
At what altitude above the earth's surface would the acceleration due to gravity be 4.9 m/s^2? Assume the mean radius of the ear
Mandarinka [93]
We apply the gravity calculation expressed in the formula: g=GM/r2 
where G is the gravitational constant, m is the mass and r is the radius
r=√GM/g
(1)       Radius = √6.674e-11*5.972e24/8             = 7058 kms    Earth radius or surface of earth from center of earth= 6400 kmsSo r= 658 kms from surface of earth.
Gravity 8m/s2 will be at 658 kms from surface of earth.
(2) half gravity= 9.8/2= 4.9 m/s2     Radius=√6.674e-11*5.972e24/4.9                 = 9019 kms        Half Gravity will exist at 9019-6400= 2619 kms from surface of earth.
4 0
2 years ago
You walk into the kitchen and see a broken egg on the floor. Which of the following is an inference you can make based on this o
Over [174]
I'd say A. because an inference is a guess/estimate. You can assume that the egg rolled off the kitchen but you know that C and D are true.
6 0
3 years ago
Read 2 more answers
What effect does Earth’s spherical shape have on the amount of sunlight that reaches the equator?
Natasha_Volkova [10]
Because the Earth<span> is a sphere, the surface gets much more intense </span>sunlight<span>, hence heat, at </span>the equator<span>than at the poles.</span>
6 0
3 years ago
Read 2 more answers
A land breeze forms when:
victus00 [196]

Explanation:

Its D. The warm air from the land moves towards the water

7 0
3 years ago
Other questions:
  • What is the phase ϕ(x,t) of the wave? Express the phase in terms of one or more given variables (A, k, x, t, and ω) and any need
    6·1 answer
  • Use the work—energy theorem to solve each of these problems. You can use Newton's laws to check your answers. Neglect air resist
    6·1 answer
  • Wire A carries 4 A into a junction, wire B carries 5 A into the same junction, and another wire is connected to the junction. Wh
    12·1 answer
  • Please help on this one? &lt;3
    14·1 answer
  • Which state of matter can be compressed?
    9·2 answers
  • A merry-go-round accelerates from rest to 0.75 rad/s in 33 s.
    11·1 answer
  • In the oscillating spring ball system, where is the velocity of the ball the greatest?
    9·1 answer
  • Two cars collide inelastically and stick together after the collision. Before the collision, the magnitudes of their momenta are
    11·1 answer
  • ____ is the study of things getting faster as they move.
    5·2 answers
  • An object of height 8.50 cm is placed 20.0 cm to the left of a converging lens with a focal length of 12.0 cm. Determine the ima
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!