1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
guapka [62]
3 years ago
10

A rocket engine has a chamber pressure 4 MPa and a chamber temperature of 2000 K. Assuming isentropic expansion through the nozz

le, and an exit Mach number of 3.2, what are the static pressure and temperature in the exit plane of the nozzle
Physics
1 answer:
gladu [14]3 years ago
6 0

This question is incomplete, the complete question is;

A rocket engine has a chamber pressure 4 MPa and a chamber temperature of 2000 K. Assuming isentropic expansion through the nozzle, and an exit Mach number of 3.2, what are the stagnation pressure and temperature in the exit plane of the nozzle?  Assume the specific heat ratio is 1.2.

Answer:

- stagnation pressure is 274.993 Mpa

- the stagnation temperature Tt is 4048 K

Explanation:

Given the data in the question;

To determine the stagnation pressure and temperature in the exit plane of the nozzle;

we us the expression;

Pt/P = (1 + (γ-1 / 2) M²)^(γ/γ -1) = ( Tt/T )^(γ/γ -1)

where Pt is stagnant pressure = ?

P is static pressure = 4 MPa = 4 × 10⁶ Pa  

Tt is stagnation temperature = ?

T is the static temperature  = 2000 K

γ is ratio of specific heats = 1.2

M is Mach number M = 3.2

we substitute

Pt/P = (1 + (γ-1 / 2) M²)^(γ/γ -1)

Pt = P(1 + (γ-1 / 2) M²)^(γ/γ -1)

Pt = 4 × 10⁶(1 + (1.2-1 / 2) 3.2²)^(1.2/1.2 -1)

Pt = 4 × 10⁶ × 68.7484

Pt = 274.993 × 10⁶ Pa

Pt = 274.993 Mpa

Therefore stagnation pressure is 274.993 Mpa

Now, to get our stagnation Temperature

Pt/P = ( Tt/T )^(γ/γ -1)

we substitute

274.993 × 10⁶ Pa / 4 × 10⁶ Pa =  ( Tt / 2000 )^(1.2/1.2 -1)

68.7484 =  Tt⁶ / 6.4 × 10¹⁹

Tt⁶ = 68.7484 × 6.4 × 10¹⁹

Tt⁶ = 4.3998976 × 10²¹

Tt = ⁶√(4.3998976 × 10²¹)

Tt = 4047.999 ≈ 4048 K

Therefore, the stagnation temperature Tt is 4048 K

You might be interested in
Put the following events in the order they occurred to lead to the formation of the solar system:
AfilCa [17]

Answer:

Third → First → Second → Fourth

Explanation:

Initially helium and Hydrogen in abundance started to form atoms

Following the atoms formation by hydrogen and helium bombardment of new matter into the Earth took place.

The bombardment of matter resulted in separation of Earth into respective layers based on the weight of the matter.

A primitive ocean was created as a result of off gassing of the volcanoes.

8 0
3 years ago
A student throws a small rock straight upwards. The rock rises to its highest point and then falls back down. How does the speed
Vladimir [108]

Answer:

we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level

for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.

Explanation:

A student throws a small rock straight upwards. The rock rises to its highest point and then falls back down. How does the speed of the rock at 2m on the way down compare with its speed at 2m on the way up?

It decreases in speed on its way down and increases in speed on its way down.

it decreases in speed on its way up because the the vertical motion is against the earths gravitational pull on an object to the earth's center

.It increases in speed on his way down because its under the influence of gravity

from newton's equation of motion we can check by

using V^2=u^2+2as

we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level

for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.

5 0
3 years ago
Heat energy moves:_______.
steposvetlana [31]

c) only from warmer areas to colder areas.

The second principle of thermodynamics states that heat can only flow from a hotter body to a cooler one. Specifically, Clausius statement says that is not possible for heat to move by itself from a lower temperature body to a higher temperature body.

3 0
3 years ago
The long term weather patterns that are typical in a location are the locations ___
11Alexandr11 [23.1K]
Climate is correct....
8 0
3 years ago
Read 2 more answers
Two long, straight wires are parallel and 26 cm apart.
mezya [45]

Answer: 2.49×10^-3 N/m

Explanation: The force per unit length that two wires exerts on each other is defined by the formula below

F/L = (u×i1×i2) / (2πr)

Where F/L = force per meter

u = permeability of free space = 1.256×10^-6 mkg/s^2A^2

i1 = current on first wire = 57A

i2 = current on second wire = 57 A

r = distance between both wires = 26cm = 0.26m

By substituting the parameters, we have that

Force per meter = (1.256×10^-6×57×57)/ 2×3.142 ×0.26

= 4080.744×10^-6/ 1.634

= 4.080×10^-3 / 1.634

= 2.49×10^-3 N/m

5 0
3 years ago
Other questions:
  • A motorist enters a freeway at 45 km/h and accelerates uniformly to 99 km/h. From the odometer in the car, the motorist knows th
    9·1 answer
  • Which of the following is an example of newton second law of motion?
    5·1 answer
  • In order for an object to have kinetic energy it must have a mass and a ?
    13·1 answer
  • A spaceship is traveling toward Earth while giving off a constant radio signal with a wavelength of 1 meter (m). What will the s
    11·1 answer
  • The maximum wavelength For photoelectric emissions in tungsten is 230 nm. What wavelength of light must be use in order for elec
    5·1 answer
  • The diagram shows a ballistic pendulum. A 200 g bullet is fired into the suspended 4 kg block of wood and remains embedded insid
    8·1 answer
  • Find the mass of a flying discus that has a net force of 1.05 newtons and accelerates at 3.5 m/s^2
    5·1 answer
  • What is the velocity of a car that travels 556km northwest in 3.2 hours
    9·1 answer
  • Why does matter increase in volume when it heats up?
    5·1 answer
  • Anya is observing an organism in the laboratory. The table below shows her observations. *
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!