Answer:
Explanation:
Speed of the source of sound = v = 44.7 m/s
Speed of sound = V = 343 m/s
a) Apparent frequency as the train approaches = f = [V /(V -v) ] × f
= [343 / (343 - 44.7) ] × 415 = 477.18 Hz
Wave length = λ = v / f = 343 / 477.18 = 0.719 m
b) Frequency heard as the train leaves = f ' = [V / ( V + v) ] f
= [343 / { 343 + 44.7 ) ] x 415
= 367.2 Hz
Wavelength when leaving = v / f = 343 / 367.2 = 0.934 m
Alright, to begin with. The unit of Force is in Newtons. Meaning the first two options are out of the answers. Now in order to find the force. You will need to take the mass and multiply that by the acceleration. Which will give you 26.75 Newtons.
Answer:
2.2 x 10-19
Explanation:
Kinetic Energy = 1/2 m v ^2
The car’s velocity at the end of this distance is <em>18.17 m/s.</em>
Given the following data:
- Initial velocity, U = 22 m/s
- Deceleration, d = 1.4

To find the car’s velocity at the end of this distance, we would use the third equation of motion;
Mathematically, the third equation of motion is calculated by using the formula;

Substituting the values into the formula, we have;

<em>Final velocity, V = 18.17 m/s</em>
Therefore, the car’s velocity at the end of this distance is <em>18.17 m/s.</em>
<em></em>
Read more: brainly.com/question/8898885