Answer:
Earth science and chemistry
Explanation:
I think so
Explanation:
First, convert 87 mi/h to ft/min.
87 mi/h × (5280 ft/mi) × (1 h / 60 min) = 7656 ft/min
The time to reach the home plate is:
t = 60 ft / 7656 ft/min
t = 0.00784 min
The number of revolutions made in that time is:
n = 1710 rev/min × 0.00784 min
n = 13.4 rev
Rounding to 2 significant figures, the ball makes 13 revolutions.
Answer:
(b) both the temperature and pressure of the gas decrease.
Explanation:
An ideal gas undergoes an adiabatic expansion, a process in which no heat flows into or out of the gas. As a result, both the temperature and pressure of the gas decrease.
Gay Lussac states that when the volume of an ideal gas is kept constant, the pressure of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Gay Lussac's law is given by;

Also, according to the first law of thermodynamics which states that energy cannot be created or destroyed but can only be transformed from one form to another. Thus, the ideal gas does work on the environment with respect to the volume and temperature.
Answer:Maybe if you would slide on your stomach you can get out of there.
Explanation:
Answer:
A.) 1.3 seconds
B.) 0.42 m
Explanation:
A.) You are given the angle of projection to be 40 degrees and initial velocity of 20m/s.
At vertical component
U = Usin 40 that is,
U = 20sin40
Using the first equation of motion under gravity
V = U - gt
Let V = 0
0 = UsinØ - gt
gt = UsinØ
t = UsinØ/g
Where U = 20 m/s
Ø = 40 degree
g = 9.8 m/s^2
Substitutes all the parameters into the formula
t = 20sin40/9.8
t = 1.3 seconds
Total time of flight T = 2t
T = 2 × 1.3 = 2.6 s
B.) To calculate the maximum height,
You will use the formula
V^2 = U^2 - 2gH
At maximum height, V = 0
2gH = Usin^2Ø
H = Usin^2Ø/ 2g
Substitutes all the parameters into the formula
H = 20 sin^2(40) ÷ 2(9.8)
H = 8.2635/19.6
H = 0.42 m