Answer:
C. Exist
Hope it helps!
umm , is it okay if we do this on microsoft word , cuz i cant send pics of answers here...
Answer:
a. V = 109.64 × 10⁵ ft/min
b. Mw = 654519.54 kg/hr
Explanation:
Given Parameters
mass flow rate of water, Mw = 90000g/min = 6607.33 kg/s
inlet temperature of water, T1 = 84 F = 28.89 C
outlet temperature of water, T2 = 68 F = 20 C
specific heat capacity of water, c = 4.18kJ/kgK
rate of heat remover from water, Qw is given by
Qw = 6607.33[28.89 - 20] * 4.18
Qw = 245529.545kw
For air, inlet condition
DBT = 70 F hi = 43.43 kJ/kg
WBT = 60 F wi = 0.00874 kJ/kg
u1 = 0.8445 m/kg
oulet condition,
DBT = 70 F RH = 100.1
h1 = 83.504kJ/kg
Wo = 0.222kJ/kg
check the attached file for complete solution
Answer:
power developed by the turbine = 6927.415 kW
Explanation:
given data
pressure = 4 MPa
specific enthalpy h1 = 3015.4 kJ/kg
velocity v1 = 10 m/s
pressure = 0.07 MPa
specific enthalpy h2 = 2431.7 kJ/kg
velocity v2 = 90 m/s
mass flow rate = 11.95 kg/s
solution
we apply here thermodynamic equation that
energy equation that is

put here value with
turbine is insulated so q = 0
so here

solve we get
w = 579700 J/kg = 579.7 kJ/kg
and
W = mass flow rate × w
W = 11.95 × 579.7
W = 6927.415 kW
power developed by the turbine = 6927.415 kW
Answer:
thickness1=1.4m
thickness2=2.2m
convection coefficient=0.33W/m^2K
Explanation:
you must use this equation to calculate the thickness:
L=K(T2-T1)/Q
L=thickness
T=temperature
Q=heat
L1=0.04*(0--350)/10=1.4m
L2=0.1(220-0)/10=2.2m
Then use this equation to calculate the convective coefficient
H=Q/(T2-T1)
H=10/(250-220)=0.33W/m^2K