1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
givi [52]
2 years ago
15

Steam at 1400 kPa and 350°C [state 1] enters a turbine through a pipe that is 8 cm in diameter, at a mass flow rate of 0.1 kg⋅s−

1. The exhaust from the turbine is carried through a 15-cm-diameter pipe and is at 50 kPa and 100°C [state 2]. What is the power output of the turbine?
H1 = 3150.7 kJ/kg V1 = 0.2004 m3/kg
H2 = 2682.6 kJ/kg V2 = 3.4181 m3/kg
Engineering
1 answer:
sergeinik [125]2 years ago
4 0

Answer:

Power output, P_{out} = 178.56 kW

Given:

Pressure of steam, P = 1400 kPa

Temperature of steam, T = 350^{\circ}C

Diameter of pipe, d = 8 cm = 0.08 m

Mass flow rate, \dot{m} = 0.1 kg.s^{- 1}

Diameter of exhaust pipe, d_{h} = 15 cm = 0.15 m

Pressure at exhaust, P' = 50 kPa

temperature, T' =  100^{\circ}C

Solution:

Now, calculation of the velocity of fluid at state 1 inlet:

\dot{m} = \frac{Av_{i}}{V_{1}}

0.1 = \frac{\frac{\pi d^{2}}{4}v_{i}}{0.2004}

0.1 = \frac{\frac{\pi 0.08^{2}}{4}v_{i}}{0.2004}

v_{i} = 3.986 m/s

Now, eqn for compressible fluid:

\rho_{1}v_{i}A_{1} = \rho_{2}v_{e}A_{2}

Now,

\frac{A_{1}v_{i}}{V_{1}} = \frac{A_{2}v_{e}}{V_{2}}

\frac{\frac{\pi d_{i}^{2}}{4}v_{i}}{V_{1}} = \frac{\frac{\pi d_{e}^{2}}{4}v_{e}}{V_{2}}

\frac{\frac{\pi \times 0.08^{2}}{4}\times 3.986}{0.2004} = \frac{\frac{\pi 0.15^{2}}{4}v_{e}}{3.418}

v_{e} = 19.33 m/s

Now, the power output can be calculated from the energy balance eqn:

P_{out} = -\dot{m}W_{s}

P_{out} = -\dot{m}(H_{2} - H_{1}) + \frac{v_{e}^{2} - v_{i}^{2}}{2}

P_{out} = - 0.1(3.4181 - 0.2004) + \frac{19.33^{2} - 3.986^{2}}{2} = 178.56 kW

You might be interested in
A four-cylinder, four-stroke internal combustion engine operates at 2800 RPM. The processes within each cylinder are modeled as
Ulleksa [173]

Answer:

1) 287760.4 Hp

2) 18410899.5 kPa

Explanation:

The parameters given are;

p₁ = 14.7 lbf/in² = 101325.9 Pa

v₁ = 0.0196 ft³ = 0.00055501 m³

T₁ = 80°F = 299.8167 K

k = 1.4

Assumptions;

1) Air standard conditions are appropriate

2) There are negligible potential and kinetic energy changes

3) The air behaves as an ideal gas and has constant specific heat capacities of temperature and pressure

1) Process 1 to 2

Isentropic compression

T₂/T₁ = (v₁/v₂)^(1.4 - 1) = 10^0.4

p₂/p₁ = (v₁/v₂)^(1.4)

p₂ = p₁×10^0.4 =  101325.9*10^0.4 = 254519.153 Pa

T₂ = 299.8167*10^0.4 = 753.106 K

p₃ = 1080 lbf/in² = 7,446,338 Pa

Stage 2 to 3 is a constant volume process

p₃/T₃ = p₂/T₂

7,446,338/T₃ =   254519.153/753.106

T₃ = 7,446,338/(254519.153/753.106) = 22033.24 K

T₃/T₄ = (v₁/v₂)^(1.4 - 1) = 10^0.4

T₄ = 22033.24/(10^0.4) = 8771.59 K

The heat supplied, Q₁ = cv(T₃ - T₂) = 0.718*(22033.24 -753.106) = 15279.14 kJ

The heat rejected = cv(T₄ - T₁) = 0.718*(8771.59 - 299.8167) = 6082.73 kJ

W(net) = The heat supplied - The heat rejected = (15279.14 - 6082.73) = 9196.41 kJ

The power = W(net) × RPM/2*1/60 = 9196.41 * 2800/2*1/60 = 214582.9 kW

The power by the engine = 214582.9 kW = 287760.4 Hp

2) The mean effective pressure, MEP  = W(net)/(v₁ - v₂)

v₁ = 0.00055501 m³

v₁/v₂ = 10

v₂ = v₁/10 = 0.00055501/10 = 0.000055501

MEP  = 9196.41/(0.00055501 -  0.000055501) = 18410899.5 kPa

4 0
3 years ago
In a production turning operation, the foreman has decreed that a single pass must be completed on the cylindrical workpiece in
stellarik [79]

Answer:

V = 125.7m/min

Explanation:

Given:

L = 400 mm ≈ 0.4m

D = 150 mm ≈ 0.15m

T = 5 minutes

F = 0.30mm ≈ 0.0003m

To calculate the cutting speed, let's use the formula :

T = \frac{pi* D * L}{V*F}

We are to find the speed, V. Let's make it the subject.

V = \frac{pi* D * L}{F*T}

Substituting values we have:

V = \frac{pi* 0.4 * 0.15}{0.0003*5}

V = 125.68 m/min ≈ 125.7 m/min

Therefore, V = 125.7m/min

7 0
3 years ago
What steps might one take to make a decision or solve a problem
marusya05 [52]

you must think and plan out what you want to do

8 0
3 years ago
Read 2 more answers
What can your employer do to protect you from overhead power lines?
agasfer [191]

Answer:

Have the power company install insulated sleeves (also known as “eels”) over power lines.​

Wearing PPE is the only way to prevent being electrocuted

Explanation:

To prevent electrocution at workplace, employers can ensure that the  power company install insulated sleeves (also known as “eels”) over power lines.​ Additionally, the employees should wear PPEs which are insulators to prevent electrocution.

5 0
3 years ago
Affordability is most concerned with:
leva [86]

Answer:

feasibility study

Explanation:

7 0
3 years ago
Other questions:
  • 1 2 3 4 5 6 7 8 9 10
    14·1 answer
  • Why is it a good idea to lock your doors while driving?<br> WRITER
    10·1 answer
  • One type of illumination system consists of rows of strip fluorescents and a ceiling that will transmit light. For this system t
    15·1 answer
  • Technician A says that the first step in diagnosing engine condition is to perform a thorough visual inspection. Technician B sa
    8·1 answer
  • The heat flux through a 1-mm thick layer of skin is 1.05 x 104 W/m2. The temperature at the inside surface is 37°C and the tempe
    8·1 answer
  • Select the correct answer
    8·1 answer
  • A spherical tank for storing gas under pressure is 25 m in diameter and is made of steel 15 mm thick. The yield point of the mat
    5·2 answers
  • The best way to become a better reader is to study longer and harder in every subject. engage in a variety of extracurricular ac
    5·2 answers
  • Water discharging into a 10-m-wide rectangular horizontal channel from a sluice gate is observed to have undergone a hydraulic j
    12·1 answer
  • Please look at the attachments and help me with these questions
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!