1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
givi [52]
3 years ago
15

Steam at 1400 kPa and 350°C [state 1] enters a turbine through a pipe that is 8 cm in diameter, at a mass flow rate of 0.1 kg⋅s−

1. The exhaust from the turbine is carried through a 15-cm-diameter pipe and is at 50 kPa and 100°C [state 2]. What is the power output of the turbine?
H1 = 3150.7 kJ/kg V1 = 0.2004 m3/kg
H2 = 2682.6 kJ/kg V2 = 3.4181 m3/kg
Engineering
1 answer:
sergeinik [125]3 years ago
4 0

Answer:

Power output, P_{out} = 178.56 kW

Given:

Pressure of steam, P = 1400 kPa

Temperature of steam, T = 350^{\circ}C

Diameter of pipe, d = 8 cm = 0.08 m

Mass flow rate, \dot{m} = 0.1 kg.s^{- 1}

Diameter of exhaust pipe, d_{h} = 15 cm = 0.15 m

Pressure at exhaust, P' = 50 kPa

temperature, T' =  100^{\circ}C

Solution:

Now, calculation of the velocity of fluid at state 1 inlet:

\dot{m} = \frac{Av_{i}}{V_{1}}

0.1 = \frac{\frac{\pi d^{2}}{4}v_{i}}{0.2004}

0.1 = \frac{\frac{\pi 0.08^{2}}{4}v_{i}}{0.2004}

v_{i} = 3.986 m/s

Now, eqn for compressible fluid:

\rho_{1}v_{i}A_{1} = \rho_{2}v_{e}A_{2}

Now,

\frac{A_{1}v_{i}}{V_{1}} = \frac{A_{2}v_{e}}{V_{2}}

\frac{\frac{\pi d_{i}^{2}}{4}v_{i}}{V_{1}} = \frac{\frac{\pi d_{e}^{2}}{4}v_{e}}{V_{2}}

\frac{\frac{\pi \times 0.08^{2}}{4}\times 3.986}{0.2004} = \frac{\frac{\pi 0.15^{2}}{4}v_{e}}{3.418}

v_{e} = 19.33 m/s

Now, the power output can be calculated from the energy balance eqn:

P_{out} = -\dot{m}W_{s}

P_{out} = -\dot{m}(H_{2} - H_{1}) + \frac{v_{e}^{2} - v_{i}^{2}}{2}

P_{out} = - 0.1(3.4181 - 0.2004) + \frac{19.33^{2} - 3.986^{2}}{2} = 178.56 kW

You might be interested in
What is an air mass?​
kotegsom [21]

Answer:

An air mass is a body of air with horizontally uniform temperature, humidity, and pressure.

Explanation:

Because it is

8 0
3 years ago
Read 2 more answers
Type the correct answer in the box. Spell all words correctly.
Rudik [331]

Answer:ii dant overstand

Explanation:

5 0
3 years ago
Functional and nonfunctional requirements documents are used to _____.
Fiesta28 [93]

Answer:

Non-functional requirements when defined and executed well will help to make the system easy to use and enhance the performance

Explanation:

7 0
3 years ago
Waste that is generated by a business is called a _____________.
matrenka [14]
It is called a ‘Waste Stream’

This should be right! Hope this helps, have a great day!
8 0
3 years ago
What is the main purpose of the alternator?
Serhud [2]
To power the cars electrical system
7 0
3 years ago
Other questions:
  • Use Newton's method to determine the angle θ, between 0 and π/2 accurate to six decimal places. for which sin(θ) = 0.1. Show you
    12·1 answer
  • Water at 20 °C is flowing with velocity of 0.5 m/s between two parallel flat plates placed 1 cm apart. Determine the distances f
    5·1 answer
  • An engineering drawing shows the: (A) dimensions, tolerances, cost, and sales or use volume of a component.(B) dimensions, toler
    10·1 answer
  • Which of the following color schemes is composed of hues next to eachother on the color wheel ?
    7·1 answer
  • Air at 80 °F is to flow through a 72 ft diameter pipe at an average velocity of 34 ft/s . What diameter pipe should be used to
    10·2 answers
  • Verizon LTE
    12·1 answer
  • ______________ help protect the lower legs and feet from heat hazards like molten metal and welding sparks. A) Safety shoesB) Le
    7·1 answer
  • A 90-hp (shaft output) electric car is powered by an electric motor mounted in the engine compartment. If the motor has an avera
    8·1 answer
  • The only function of a flywheel is to cool the engine during operation. <br> True or False?
    5·2 answers
  • An air-standard Diesel cycle engine operates as follows: The temperatures at the beginning and end of the compression stroke are
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!