1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
givi [52]
2 years ago
15

Steam at 1400 kPa and 350°C [state 1] enters a turbine through a pipe that is 8 cm in diameter, at a mass flow rate of 0.1 kg⋅s−

1. The exhaust from the turbine is carried through a 15-cm-diameter pipe and is at 50 kPa and 100°C [state 2]. What is the power output of the turbine?
H1 = 3150.7 kJ/kg V1 = 0.2004 m3/kg
H2 = 2682.6 kJ/kg V2 = 3.4181 m3/kg
Engineering
1 answer:
sergeinik [125]2 years ago
4 0

Answer:

Power output, P_{out} = 178.56 kW

Given:

Pressure of steam, P = 1400 kPa

Temperature of steam, T = 350^{\circ}C

Diameter of pipe, d = 8 cm = 0.08 m

Mass flow rate, \dot{m} = 0.1 kg.s^{- 1}

Diameter of exhaust pipe, d_{h} = 15 cm = 0.15 m

Pressure at exhaust, P' = 50 kPa

temperature, T' =  100^{\circ}C

Solution:

Now, calculation of the velocity of fluid at state 1 inlet:

\dot{m} = \frac{Av_{i}}{V_{1}}

0.1 = \frac{\frac{\pi d^{2}}{4}v_{i}}{0.2004}

0.1 = \frac{\frac{\pi 0.08^{2}}{4}v_{i}}{0.2004}

v_{i} = 3.986 m/s

Now, eqn for compressible fluid:

\rho_{1}v_{i}A_{1} = \rho_{2}v_{e}A_{2}

Now,

\frac{A_{1}v_{i}}{V_{1}} = \frac{A_{2}v_{e}}{V_{2}}

\frac{\frac{\pi d_{i}^{2}}{4}v_{i}}{V_{1}} = \frac{\frac{\pi d_{e}^{2}}{4}v_{e}}{V_{2}}

\frac{\frac{\pi \times 0.08^{2}}{4}\times 3.986}{0.2004} = \frac{\frac{\pi 0.15^{2}}{4}v_{e}}{3.418}

v_{e} = 19.33 m/s

Now, the power output can be calculated from the energy balance eqn:

P_{out} = -\dot{m}W_{s}

P_{out} = -\dot{m}(H_{2} - H_{1}) + \frac{v_{e}^{2} - v_{i}^{2}}{2}

P_{out} = - 0.1(3.4181 - 0.2004) + \frac{19.33^{2} - 3.986^{2}}{2} = 178.56 kW

You might be interested in
A piston-cylinder apparatus has a piston of mass 2kg and diameterof
iragen [17]

Answer:

M =2.33 kg

Explanation:

given data:

mass of piston - 2kg

diameter of piston is 10 cm

height of water 30 cm

atmospheric pressure 101 kPa

water temperature = 50°C

Density of water at 50 degree celcius is 988kg/m^3

volume of cylinder is  V = A \times h

                                       = \pi r^2 \times h

                                       = \pi 0.05^2\times 0.3

mass of available in the given container is

M = V\times d

  = volume \times density

= \pi 0.05^2\times 0.3 \times 988

M =2.33 kg

6 0
3 years ago
In the fully developed region of flow in a circular pipe, does the velocity profile change in the flow direction?
taurus [48]

Answer:

<em>No, the velocity profile does not change in the flow direction.</em>

Explanation:

In a fluid flow in a circular pipe, the boundary layer thickness increases in the direction of flow, until it reaches the center of the pipe, and fill the whole pipe. If the density, and other properties of the fluid does not change either by heating or cooling of the pipe, <em>then the velocity profile downstream becomes fully developed, and constant, and does not change in the direction of flow.</em>

3 0
2 years ago
Assume the impedance of a circuit element is Z = (3 + j4) Ω. Determine the circuit element’s conductance and susceptance.
djyliett [7]

Answer:

B. G = 333 mS, B = j250 mS

Explanation:

impedance of a circuit element is Z = (3 + j4) Ω

The general equation for impedance

Z = (R + jX) Ω

where

R = resistance in ohm

X = reactance

R = 3Ω  X = 4Ω

Conductance = 1/R while Susceptance = 1/X

Conductance = 1/3 = 0.333S

= 333 mS

Susceptance = 1/4 = 0.25S

= 250mS

The right option is B. G = 333 mS, B = j250 mS

8 0
2 years ago
A horizontal curve of a two-lane undivided highway (12-foot lanes) has a radius of 678 feet to the center line of the roadway. A
OLEGan [10]

Answer:

maximum speed for safe vehicle operation = 55mph

Explanation:

Given data :

radius ( R ) = 678 ft

old building located ( m )= 30 ft

super elevation = 0.06

<u>Determine the maximum speed for safe vehicle operation </u>

firstly calculate the stopping sight distance

m = R ( 1 - cos \frac{28.655*S}{R} )  ----  ( 1 )

R = 678  

m ( horizontal sightline ) = 30 ft

back to equation 1

30 = 678 ( 1 - cos (28.655 *s / 678 ) )

( 1 - cos (28.655 *s / 678 ) )  = 30 / 678 = 0.044

cos \frac{28.65 *s }{678}  = 1.044

hence ; 28.65 * s = 678 * 0.2956

s = 6.99 ≈ 7 ft

next we will calculate the design speed ( u ) using the formula below

S = 1.47 ut  + \frac{u^2}{30(\frac{a}{3.2} )-G1}  ----  ( 2 )

t = reaction time,  a = vehicle acceleration, G1 = grade percentage

assuming ; t = 2.5 sec , a = 11.2 ft/sec^2, G1 = 0

back to equation 2

6.99 = 1.47 * u * 2.5 + \frac{u^2}{30[(11.2/32.2)-0 ]}

3.675 u  + 0.0958 u^2 - 6.99 = 0

u ( 3.675 + 0.0958 u ) = 6.99

5 0
2 years ago
Explain why the following scenario fails to meet the definition of a project description.
s344n2d4d5 [400]

Answer:

The youth hockey training facility

Explanation:

7 0
3 years ago
Other questions:
  • we want to make a schottky diode on one surface of an n-type semiconductor, and an ohmic contact on the other side. the electron
    10·1 answer
  • What are factor of safety for brittle and ductile material
    5·1 answer
  • What was the purpose of the vasa ship
    11·1 answer
  • 1. Using a typical frequency value for the initiating event and PFD values provided in class lectures, estimate the mishap or co
    6·1 answer
  • How may a Professional Engineer provide notice of licensure to clients?
    9·1 answer
  • Which statement concerning symbols used on plans is true?
    10·1 answer
  • Q1. Basic calculation of the First law (2’) (a) Suppose that 150 kJ of work are used to compress a spring, and that 25 kJ of hea
    6·1 answer
  • ) Assuming different AM regulations; the receiver is using mixer with subtracting format. The frequency selectivity ratio is app
    12·1 answer
  • 1. When and why should we use the Pattern option?
    12·1 answer
  • A tank with a volume of 40 cuft is filled with a carbon dioxide and air mixture. The pressure within the tank is 30 psia at 70oF
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!