1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erica [24]
2 years ago
11

Steam enters a steady-flow adiabatic nozzle with a low inlet velocity (assume ~0 m/s) as a saturated vapor at 6 MPa and expands

to 1.2 MPa.
a. Under what conditions is the velocity from this nozzle maximized?
b. Determine the maximum exit velocity of the steam, in m/s.
Engineering
1 answer:
Sergio [31]2 years ago
7 0
Yea bro I don’t really know
You might be interested in
Sea A una matriz 3x3 con la propiedad de que la transformada lineal x → Ax mapea R³ sobre R³.
skelet666 [1.2K]

Answer:

ax

Explanation:

7 0
2 years ago
Air enters a compressor steadily at the ambient conditions of 100 kPa and 22°C and leaves at 800 kPa. Heat is lost from the comp
telo118 [61]

Answer:

a) 358.8K

b) 181.1 kJ/kg.K

c) 0.0068 kJ/kg.K

Explanation:

Given:

P1 = 100kPa

P2= 800kPa

T1 = 22°C = 22+273 = 295K

q_out = 120 kJ/kg

∆S_air = 0.40 kJ/kg.k

T2 =??

a) Using the formula for change in entropy of air, we have:

∆S_air = c_p In \frac{T_2}{T_1} - Rln \frac{P_2}{P_1}

Let's take gas constant, Cp= 1.005 kJ/kg.K and R = 0.287 kJ/kg.K

Solving, we have:

[/tex] -0.40= (1.005)ln\frac{T_2}{295} ln\frac{800}{100}[/tex]

-0.40= 1.005(ln T_2 - 5.68697)- 0.5968

Solving for T2 we have:

T_2 = 5.8828

Taking the exponential on the equation (both sides), we have:

[/tex] T_2 = e^5^.^8^8^2^8 = 358.8K[/tex]

b) Work input to compressor:

w_in = c_p(T_2 - T_1)+q_out

w_in = 1.005(358.8 - 295)+120

= 184.1 kJ/kg

c) Entropy genered during this process, we use the expression;

Egen = ∆Eair + ∆Es

Where; Egen = generated entropy

∆Eair = Entropy change of air in compressor

∆Es = Entropy change in surrounding.

We need to first find ∆Es, since it is unknown.

Therefore ∆Es = \frac{q_out}{T_1}

\frac{120kJ/kg.k}{295K}

∆Es = 0.4068kJ/kg.k

Hence, entropy generated, Egen will be calculated as:

= -0.40 kJ/kg.K + 0.40608kJ/kg.K

= 0.0068kJ/kg.k

3 0
3 years ago
what is an example of an innovative solution to an engineering problem? Explain briefly why you chose this answer.
Leviafan [203]

Answer:

robotic technology    

Explanation:

Innovation is nothing but the use of various things such as ideas, products, people to build up a solution for the benefit of the human. It can be any product or any solution which is new and can solve people's problems.

Innovation solution makes use of technology to provide and dispatch new solutions or services which is a combination of both technology and ideas.

One such example of an innovative solution we can see is the use of "Robots" in medical science or in any military operations or rescue operation.

Sometimes it is difficult for humans to do everything or go to everywhere. Thus scientist and engineers have developed many advance robots or machines using new ideas and technology to find solutions to these problems.

Using innovations and technologies, one can find solutions to many problems which is difficult for the peoples. Robots can be used in any surveillance operation or in places of radioactive surrounding where there is a danger of humans to get exposed to such threats. They are also used in medical sciences to operate and support the patient.  

3 0
3 years ago
Is the flow of power reversible in a worm and wheel gear
nikitadnepr [17]

The flow of power cannot be reversed since the slider could not move the worm gears. Since the input has one continuous tooth and the output has not teeth there is no gear ratio and no change in torque and speed.

8 0
2 years ago
A beam has a rectangular cross section that is 5 inches wide and 1.5 inches tall. The supports are 60 inches apart and with a 12
nydimaria [60]

Answer:

The value of Modulus of elasticity E = 85.33 × 10^{6} \frac{lbm}{in^{2} }

Beam deflection is = 0.15 in

Explanation:

Given data

width = 5 in

Length = 60 in

Mass of the person = 125 lb

Load = 125 × 32 = 4000\frac{ft lbm}{s^{2} }

We know that moment of inertia is given as

I = \frac{bt^{3} }{12}

I = \frac{5 (1.5^{3} )}{12}

I = 1.40625 in^{4}

Deflection = 0.15 in

We know that deflection of the beam in this case is given as

Δ = \frac{PL^{3} }{48EI}

0.15 = \frac{4000(60)^{3} }{48 E (1.40625)}

E = 85.33 × 10^{6} \frac{lbm}{in^{2} }

This is the value of Modulus of elasticity.

Beam deflection is = 0.15 in

6 0
2 years ago
Other questions:
  • Type a C statement that declares and initializes variable taxRate to the value 0.085. Make sure to include a prefix 0 before typ
    14·1 answer
  • Design a PLC ladder logic program to control the operation of a conveyor-storage system using the following sequence: - 1. Progr
    5·1 answer
  • 5.5 A scraper with a 275 hp diesel engine will be used to excavate and haul earth for a highway project. An evaluation of the jo
    10·1 answer
  • Are routers better for internet connection rather than a WiFi modem?
    6·2 answers
  • Technician A says that in a worm gear steering system, most excessive steering free play is usually found in the gearbox. Techni
    13·1 answer
  • The host at the end of the video claims that ___________ is crucial to his success as a driver. A. Reaction time B. A safe space
    5·1 answer
  • All of these are true about using adhesive EXCEPT:
    6·1 answer
  • An ideal gas is contained in a closed assembly with an initial pressure and temperature of
    14·1 answer
  • 40 POINTS IF ANSERED WITHIN 10 MINS
    13·2 answers
  • Chemical engineers determine how to transport chemicals.<br> O True<br> False
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!