Answer:
a) 2.452
b) 1.256
Explanation:
Stress due to dead weight. = 14 Ksi
Stress due to fully loaded tractor-trailer = 45Ksi
ultimate tensile strength of beam = 76 Ksi
yield strength = 50 Ksi
endurance limit = 38 Ksi
Determine the safety factor for an infinite fatigue life
a) If mean stress on fatigue strength is ignored
β = ( 45 - 14 ) / 2
= 15.5 Ksi
hence FOS ( factor of safety ) = endurance limit / β
= 38 / 15.5 = 2.452
b) When mean stress on fatigue strength is considered
β2 = 45 + 14 / 2
= 29.5 Ksi
Ratio = β / β2 = 15.5 / 29.5 = 0.5254
Next step: applying Goodman method
Sa = [ ( 0.5254 * 38 *76 ) / ( 0.5254*76 + 38 ) ]
= 19.47 Ksi
hence the FOS ( factor of safety ) = Sa / β
= 19.47 / 15.5 = 1.256
Answer:
Force per unit plate area is 0.1344 
Solution:
As per the question:
The spacing between each wall and the plate, d = 10 mm = 0.01 m
Absolute viscosity of the liquid, 
Speed, v = 35 mm/s = 0.035 m/s
Now,
Suppose the drag force that exist between each wall and plate is F and F' respectively:
Net Drag Force = F' + F''

where
= shear stress
A = Cross - sectional Area
Therefore,
Net Drag Force, F = 

Also
F = 
where
= dynamic coefficient of viscosity
Pressure, P = 
Therefore,


Answer:
The probable grain-coarsening mechanism is : Ideal grain growth mechanism
(
-
= kt )
Explanation:
The plot attached below shows the time dependence of the growth of grain.
The probable grain-coarsening mechanism is : Ideal grain growth mechanism
the ideal growth follows this principle =
= kt
d = final grain size
= initial grain size
k = constant ( temperature dependent )
t = 0
Answer:
Some of the internal strain energy is relieved.
There is some reduction in the number of dislocations.
The electrical conductivity is recovered to its precold-worked state.
The thermal conductivity is recovered to its precold-worked state
Explanation:
The process of the recovery of a cold-worked material happens at a very low temperature, this process involves the movement and annihilation of points where there are defects, also there is the annihilation and change in position of dislocation points which leads to forming of the subgrains and the subgrains boundaries such as tilt, twist low angle boundaries.
Answer:
-50.005 KJ
Explanation:
Mass flow rate = 0.147 KJ per kg
mass= 10 kg
Δh= 50 m
Δv= 15 m/s
W= 10×0.147= 1.47 KJ
Δu= -5 kJ/kg
ΔKE + ΔPE+ ΔU= Q-W
0.5×m×(30^2- 15^2)+ mgΔh+mΔu= Q-W
Q= W+ 0.5×m×(30^2- 15^2) +mgΔh+mΔu
= 1.47 +0.5×1/100×(30^2- 15^2)-9.7×50/1000-50
= 1.47 +3.375-4.8450-50
Q=-50.005 KJ