Given:-
- Time taken by the particle (t) = 6 s
- Average speed (v) = 40 m/s
To Find: Distance (s) travelled by the particle.
We know,
s = vt
where,
- s = Distance travelled,
- v = Speed &
- t = Time taken.
Putting the values,
s = (40 m/s)(6 s)
→ s = 240 m ...(Ans.)
GIVEN:
60 beats per minute
21 beats per minute
find x= how fast would an astronaut be flying away
1 x
----- * ------ = (60x = 21) -------> 60x = 21 ------------> x= 0.35
60 21 ------- -----
60 60
The answer is 0.35 seconds which refers to how fast would an astronaut be flying away from the earth if he has a heart rate of 21 beats/min.
A medulla is a group of cells that are going through hair, forensic scientist use it to find out the pigment, (color), and the shape.
The only thing we know of so far that can shift light to longer wavelengths is the "Doppler" effect. If the source and the observer are moving apart, then the observer sees wavelengths that are longer than they should be. If the source and the observer are moving toward each other, then the observer sees wavelengths that are shorter than they should be. It works for ANY wave ... sound, light, water etc. The trick is to know what the wavelength SHOULD be. If you know that, then you can tell whether you and the source are moving together or apart, and you can even tell how fast. If the lines in a star"s spectrum are at wavelengths that are too long, then from everything we know right now, the star and Earth are moving apart.