Answer:
C) 3,000 kg m/s
Explanation:
We can consider the horizontal velocity of the motorcycle to be zero, since it rolls off the edge of the cliff very slowly. So, we only need to find the vertical velocity at the time of the impact with the ground.
The vertical velocity of the motorcycle at time t is given by (free-fall motion):

where
is the initial vertical velocity (zero, since the motorcycle is not moving)
g = 9.8 m/s^2 is the acceleration due to gravity
t is the time
Since the motorcycle hits the ground after t = 3 seconds, we have

And since we know its mass, m=100 kg, we can find its momentum:

and the negative sign simply means downward direction.
Acceleration is the rate of change of velocity as a function of time. For example a car traveling at 50 km/hr starts to accelerate, 10 seconds after, its speed changes to 100 km/hr then the acceleration of the car during the time can be calculated as below: initial speed = 50 km/hr.
Answer:
(a) - 42700 m/s
(b) - 6.8 x 10^-4 m/s^2
Explanation:
initial velocity of star, u = 20.7 km/s
Final velocity of star, v = - 22 km/s
time, t = 1.99 years
Convert velocities into m/s and time into second
So, u = 20700 m / s
v = - 22000 m/s
t = 1.99 x 365.25 x 24 x 3600 = 62799624 second
(a) Change in planet's velocity = final velocity - initial velocity
= - 22000 - 20700 = - 42700 m/s
(b) Accelerate is defined as the rate of change of velocity.
Acceleration = change in velocity / time
= ( - 42700 ) / (62799624) = - 6.8 x 10^-4 m/s^2
Answer:
they cant travel through a vacuum
Answer:
(D)
Explanation:
Given :
l=3.5 m


Resistance can be calculated as :


Resistance of the wire will be 1.1×
ohms
Option D is correct