The simplest answer would be "acceleration due to gravity."
The exact value of this acceleration changes depending on which planet your on (for example).
The magnitude of velocity for this car is equal to 1.5 m/s.
<u>Given the following data:</u>
- Momentum of car = 3,000 kgm/s.
To calculate the magnitude of velocity for this car:
<h3>What is momentum?</h3>
In Science, momentum simply means a multiplication of the mass of an object and its velocity.
Mathematically, momentum is giving by the formula;

Making velocity the subject of formula, we have:

Substituting the given parameters into the formula, we have;

Velocity = 1.5 m/s.
Read more on momentum here: brainly.com/question/15517471
Given that,
Frequency emitted by the bat, f = 47.6 kHz
The speed off sound in air, v = 413 m/s
We need to find the wavelength detected by the bat. The speed of a wave is given by formula as follows :

or

So, the bat can detect small objects such as an insect whose size is approximately equal to the wavelength of the sound the bat makes i.e. 8.67 mm.
Answer:
Part 1) Time of travel equals 61 seconds
Part 2) Maximum speed equals 39.66 m/s.
Explanation:
The final speed of the train when it completes half of it's journey is given by third equation of kinematics as

where
'v' is the final speed
'u' is initial speed
'a' is acceleration of the body
's' is the distance covered
Applying the given values we get

Now the time taken to attain the above velocity can be calculated by the first equation of kinematics as

Since the deceleration is same as acceleration hence the time to stop in the same distance shall be equal to the time taken to accelerate the first half of distance
Thus total time of journey equals
Part b)
the maximum speed is reached at the point when the train ends it's acceleration thus the maximum speed reached by the train equals 
Objects absorb and reflect light differently depending on their physical characteristics, such as their shape or composition. Thanks to the reflection we can see the objects. Reflection can be defined as the change of direction of a wave, which, when in contact with the separation surface between two changing means, returns to the point where it originated. When the light illuminates the object, such as the tree, the rays of light will disperse in all directions allowing observation.
The correct answer is A. From every point on the surface of the tree, and in every direction