Answer
given,
v = (6 t - 3 t²) m/s
we know,


position of the particle

integrating both side

x = 3 t² - t³
Position of the particle at t= 3 s
x = 3 x 3² - 3³
x = 0 m
now, particle’s deceleration


a = 6 - 6 t
at t= 3 s
a = 6 - 6 x 3
a = -12 m/s²
distance traveled by the particle
x = 3 t² - t³
at t = 0 x = 0
t = 1 s , x = 3 (1)² - 1³ = 2 m
t = 2 s , x = 3(2)² - 2³ = 4 m
t = 3 s , x = 0 m
total distance traveled by the particle
D = distance in 0-1 s + distance in 1 -2 s + distance in 2 -3 s
D = 2 + 4 + 2 = 8 m
average speed of the particle



Answer:
A. mass
Explanation:
<u>Mass</u> determines the quantity of inertia for an object. Mass is the quantity that depends upon the inertia of an object. The inertia that an object has is directly proportional to the mass of the object.
An object that has more mass has a greater tendency as compared to the object that has less mass to resist changes in its state of motion.
Answer: Gravitational force
Explanation:
A non contact force can be described as a force applied to an object by another body that is not in direct contact with it.
For example, an object thrown upwards will return back due to the force of gravity acting on it. So, it means Gravitational force is acting on the body without necessarily being in contact with that body.
Answer:
The momentum of the ball is 500 kg·m/s
Explanation:
The momentum is given by Mass × Velocity
The given parameters are;
The mass of the box = 10 kg
The velocity by which the box is sliding = 50 m/s
Therefore, the momentum of the ball is given as follows;
The momentum of the ball = 10 kg × 50 m/s = 500 kg·m/s
The momentum of the ball = 500 kg·m/s