Answer:
282 m
Explanation:
Given:
v₀ = 20.1 m/s
v = 33.2 m/s
t = 10.6 s
Find: Δx
Δx = ½ (v + v₀) t
Δx = ½ (33.2 m/s + 20.1 m/s) (10.6 s)
Δx ≈ 282 m
Answer:
In a chemical reaction the total mass of all the substances taking part in the reaction remains the same. Also, the number of atoms in a reaction remains the same. Mass cannot be created or destroyed in a chemical reaction.
Explanation:
The mechanical energy of the girl will be conserved because the system is isolated and the initial potential energy will be equal to final kinetic energy.
<h3>
What is the law of conservation of energy?</h3>
The law of conservation of energy states that energy can neither be created nor destroyed but can be transformed from one form to another.
The change in the potential energy of the launched from a height into the pool without friction from the given height h is calculated by applying the following kinematic equation.
ΔP.E = ΔK.E
where;
- ΔP.E is change in potential energy of the child
- ΔK.E is change in the kinetic energy of the child
mghf - mghi = ¹/₂mv² - ¹/₂mu²
where;
- m is the mass of the girl
- g is acceleration due to gravity
- hi is the initial height of the girl
- hf is the final height when she is launched into the pool
- u is the initial velocity
- v is the final velocity of the girl
Thus, for every closed or isolated system such as this case, mechanical energy is always conserved because the initial potential energy of the girl will be converted into her final kinetic energy.
Learn more about conservation of mechanical energy here: brainly.com/question/332163
#SPJ1
Answer:
False
Explanation:
As we know that, the Balmer series gives the n values as,
.
.
Now the value of wavelength can be calculated as,
.
Here,
.
And
.
Now,
.
Therefore,

Therefore, the wavelength of Balmer series lies in visible region which is 547 nm.