Answer:
It's C
Explanation: I don't need to give you an explanation >:(
-7.1-3.2 extract the negative sign and then add the negative numbers -(7.1+3.2) your answer would be -10.3
Solve using PEMDAS for the numerator and denominator.
24-11^4/24+11^4
24-14641/24+14641
-14617/14665
Best of Luck!
Define
![{x} = \left[\begin{array}{ccc}x_{1}\\x_{2}\end{array}\right]](https://tex.z-dn.net/?f=%7Bx%7D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_%7B1%7D%5C%5Cx_%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20)
Then
x₁ = cos(t) x₁(0) + sin(t) x₂(0)
x₂ = -sin(t) x₁(0) + cos(t) x₂(0)
Differentiate to obtain
x₁' = -sin(t) x₁(0) + cos(t) x₂(0)
x₂' = -cos(t) x₁(0) - sin(t) x₂(0)
That is,
![\dot{x} = \left[\begin{array}{ccc}-sin(t)&cos(t)\\-cos(t)&-sin(t)\end{array}\right] x(0)](https://tex.z-dn.net/?f=%5Cdot%7Bx%7D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-sin%28t%29%26cos%28t%29%5C%5C-cos%28t%29%26-sin%28t%29%5Cend%7Barray%7D%5Cright%5D%20x%280%29)
Note that
![\left[\begin{array}{ccc}0&1\\-1&09\end{array}\right] \left[\begin{array}{ccc}cos(t)&sin(t)\\-sin(t)&cos(t)\end{array}\right] = \left[\begin{array}{ccc}-sin(t)&cos(t)\\-cos(t)&-sin(t)\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%261%5C%5C-1%2609%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcos%28t%29%26sin%28t%29%5C%5C-sin%28t%29%26cos%28t%29%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-sin%28t%29%26cos%28t%29%5C%5C-cos%28t%29%26-sin%28t%29%5Cend%7Barray%7D%5Cright%5D%20)
Therefore
<h3>
Answer: Everything but the lower right hand corner</h3>
==============================
Explanation:
Notice for the corners mentioned, we have the figures with corresponding angles that are the same (shown by similar arc markings) and they have congruent corresponding sides as well (aka they are the same length shown by similar tickmarks). Rotating one figure has it transform into the other.
The only time this does not happen is with the pair of figures in the bottom right hand corner. One square has side lengths of 20, the other has side lengths of 25. The two figures are not congruent due to the side mismatch.