The fragment of an asteroid or any interplanetary material is known as A. METEROID
Iron rich minerals in rock pointed in one direction the switch to the exact opposite direction. I'd say that what supports this idea is that Earth's magnetic field goes through pole reversals.<span>
</span>
Answer:
The carriage has the energy, W = 2469.6 J
Explanation:
Given data,
The height of the hill, h = 21 m
The carriage with the baby weighs, m = 12 kg
The energy possessed by the body due to its position is the potential energy,
<em>W = P.E = mgh joules</em>
Substituting the values,
W = 12 x 9.8 x 21
= 2469.6 J
Hence, the carriage has the energy, W = 2469.6 J
1) By looking at the table of the visible spectrum, we see that blue light has a wavelength in the range [450-490 nm], while red light has wavelength in the range [620-750 nm]. Therefore, red light has longer wavelength than blue light.
2) The frequency f of an electromagnetic wave is related to its wavelength

by the formula

where c is the speed of light. We see that the frequency is inversely proportional to the wavelength, so the shorter the wavelength, the greater the frequency. In this case, blue light has shorter wavelength than red light, so blue light has greater frequency than red light.
3) The energy of the photons of an electromagnetic wave is given by

where h is the Planck constant and f is the frequency. We see that the energy is directly proportional to the frequency, so the greater the frequency, the greater the energy. In this problem, blue light has greater frequency than red light, so blue light has also greater energy than red light.
I honestly don't see anything above. But 'H' on a weather map usually shows the center of a high-pressure system.