Answer:
700 mL or 0.0007 m³
Explanation:
P₁ = Initial pressure = 2 atm
V₁ = Initial volume = 350 mL
P₂ = Final pressure = 1 atm
V₂ = Final volume
Here the temperature remains constant. So, Boyle's law can be applied here.
P₁V₁ = P₂V₂

So, volume of this sample of gas at standard atmospheric pressure would be 700 mL or 0.0007 m³
The equation that represents the principle of the lever balance is:
- W₁ + W₂ = W3 + W4; option A.
<h3>What is the principle of moments?</h3>
The principle of moments states when a body is in equilibrium, the sum of the clockwise moment about a point equals the sum of anticlockwise moment about that point.
A see-saw represents a balanced system of moments.
The sum of clockwise moment = The sum of anticlockwise moments.
Assuming W1 and W2 are clockwise moments and W3 and W4 are anticlockwise moments.
The equation will b: W₁ + W₂ = W3 + W4
In conclusion, a balanced see-saw illustrates the principle of the lever balance.
Learn more about principle of moments at: brainly.com/question/20519177
#SPJ1
The angular speed is defined as:
<h2> ω=

</h2>
where



Answer:
16 km
Explanation:
Drawing a right triangle to model the problem helps. I started by drawing the lines of the triangle to model the hiker's journey- a vertical straight line for 11 km north and then a horizontal line connected to the top of it for 11 km east; I then drew the hypothenuse to connect the two lines.
The hypothenuse is what we have to solve for, so we will use the Pythagorean Theorem, a^2 + b^2 = c^2. Since both distances are 11 km both a and b in the equation are 11.
11^2 + 11^2 = c^2
121 + 121 = c^2
242 = c^2
c = 15.56
Rounding the answer makes it 16 km for the hiker's magnitude of displacement.
There's actually potential energy before the kinetic energy came into play, but the sum of potential and kinetic energy is MECHANICAL ENERGY.