The solute has to be hydrophilic, (water loving).
Answer:
174 kPa
Explanation:
Given that,
Initial temperature, T₁ = 25° C = 25+273 = 298 K
Final temperature, T₂ = 225°C = 225 + 273 = 498 K
Initial pressure, P₁ = 104 kPa
We need to find the new pressure. The relation between the temperature and pressure is given by :
So,
or
P₂ = 174 kPa
So, the new pressure is 174 kPa.
Without being given a temperature or amount of solute, it's not as easy to find the level of saturation. If there is excess of solvent in the beaker, the solution is unsaturated. In this case, the solution is clear so there is no indication of excess of solute or solvent. Therefore, the solution is saturated.
Answer:
0.404M
Explanation:
...<em>To make exactly 100.0mL of solution...</em>
Molar concentration is defined as the amount of moles of a solute (In this case, nitrate ion, NO₃⁻) in 1 L of solution.
To solve this question we need to convert the mass of Fe(NO₃)₃ to moles. As 1 mole of Fe(NO₃)₃ contains 3 moles of nitrate ion we can find moles of nitrate ion in 100.0mL of solution, and we can solve the amount of moles per liter:
<em>Moles Fe(NO₃)₃ -Molar mass: 241.86g/mol-:</em>
3.26g * (1mol / 241.86g) =
0.01348 moles Fe(NO₃)₃ * (3 moles of NO₃⁻ / 1mole Fe(NO₃)₃) =
<em>0.0404 moles of NO₃⁻</em>
In 100mL = 0.1L, the molar concentration is:
0.0404 moles of NO₃⁻ / 0.100L =
<h3>0.404M</h3>
<u>Gas</u>
<em>Gas</em><em> </em><em>particles</em><em> </em><em>got</em><em> </em><em>the</em><em> </em><em>most</em><em> </em><em>energy</em><em> </em><em>because of how freely the molecules move</em>
Hope this helped you, have a good day bro cya)