Mary thinking her astrological sign, Leo, is a perfect fit for her personality is a belief in pseudoscience because there is not scientific evidence confirming such beliefs.
The answer is the second option.
Answer:
Percentage lithium by mass in Lithium carbonate sample = 19.0%
Explanation:
Atomic mass of lithium = 7.0 g; atomic mass of Chlorine = 35.5 g; atomic mass of carbon = 12.0 g; atomic mass of oxygen = 16.0 g
Molar mass of lithium chloride, LiCl = 7 + 35.5 = 42.5 g
Percentage by mass of lithium in LiCl = (7/42.5) * 100% = 16.4 % aproximately 16%
Molar mass of lithium carbonate, Li₂CO₃ = 7 * 2 + 12 + 16 * 3 =74.0 g
Percentage by mass of lithium in Li₂CO₃ = (14/74) * 100% = 18.9 % approximately 19%
Mass of Lithium carbonate sample = 2 * 42.5 = 85.0 g
mass of lithium in 85.0 g Li₂CO₃ = 19% * 85.0 g = 16.15 g
Percentage by mass of lithium in 85.0 g Li₂CO₃ = (16.15/85.0) * 100 % = 19.0%
Percentage lithium by mass in Lithium carbonate sample = 19.0%
Moles of potassium permanganate = 0.0008
<h3>Further explanation </h3>
Titration is a procedure for determining the concentration of a solution by reacting with another solution which is known to be concentrated (usually a standard solution). Determination of the endpoint/equivalence point of the reaction can use indicators according to the appropriate pH range
Reaction
5Na2C2O4(aq) + 2KMnO4(aq) + 8H2SO4(aq) ---> 2MnSO4(aq) + K2SO4(aq) + 5Na2SO4(aq) + 10CO2(g) + 8H2O(1)
The end point ⇒titrant and analyte moles equal
titrant : potassium permanganate-KMnO4
analyte : sodium oxalate - Na2C2O4
so moles of KMnO4 = moles of Na2C2O4
moles of Na2C2O4(mass = 0.2640 g, MW=134 g/mol) :

From equation, mol ratio Na2C2O4 : KMnO4 = 5 : 2, so mol KMnO4 :

5.451 X 10³ kg of sodium carbonate must be added to neutralize 5.04×103 kg of sulfuric acid solution.
<u>Explanation</u>:
- Sodium carbonate is used to neutralized sulfuric acid, H₂SO₄. Sodium carbonate is the salt of a strong base (NaOH) and weak acid (H₂CO₃). The balanced chemical reaction for neutralization is as follows:
Na₂CO₃ + H₂SO₄ ----> Na₂SO₄ + H₂CO₃
- From a balanced chemical equation, it is clear that one mole of Na₂CO₃ is required to neutralize one mole of H₂SO₄.
- Molar mass of Na₂CO₃= 106 g/mol = 0.106 kg/mol and Molar mass of H₂SO₄= 98 g/mol = 0.098 kg/mol.
- To neutralize 0.098 kg of H₂SO₄ amount of Na₂CO₃ required is 0.106 kg, so, To neutralize 5.04×10³ kg of H₂SO₄, Na₂CO₃ required is = 5.451 X 10³ kg.