Endothermic reaction absorb energy leaving the product with more energy than the reactants.
<h2><u>
Answer:</u></h2>
0.126 Liters
<h2><u>
Explanation:</u></h2>
V = mRT / mmP
First, convert the 2.25g of Nitrogen gas into moles. (m in the equation above)
2.25g x 1 mole / 28.0g = 0.08036 moles = m
28.0g = mm
Next, convert the 273 Celsius into Kelvin. (T in the equation above)
273 Celsius + 273.15 = 546.15K = T
R = 0.08206L*atm/mol*K
(Quick Note: The R changes depending on the Pressure Unit so do not use this number every time.)
Now, plug everything into the equation.
V = (0.08036)(0.08206)(546.15)/(28.0)(1.02)
V = 0.126 L
Answer: Among the listed substances is the molecular compound.
Explanation:
A chemical compound formed by the chemical combination of two or more non-metals is called a molecular compound or covalent compound.
For example, Xe and Cl are non-metals. The compound formed by them is which is a molecular compound.
A molecular compound is formed by sharing of atoms between the combining atoms.
Whereas NaF, and CaO are all ionic compounds as they are formed by chemical combination of a metal and a non-metal.
Thus, we can conclude that among the listed substances is the molecular compound.
Answer:
The specific heat of the metal is 2.09899 J/g℃.
Explanation:
Given,
For Metal sample,
mass = 13 grams
T = 73°C
For Water sample,
mass = 60 grams
T = 22°C.
When the metal sample and water sample are mixed,
The addition of metal increases the temperature of the water, as the metal is at higher temperature, and the addition of water decreases the temperature of metal. Therefore, heat lost by metal is equal to the heat gained by water.
Since, heat lost by metal is equal to the heat gained by water,
Qlost = Qgain
However,
Q = (mass) (ΔT) (Cp)
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
After mixing both samples, their temperature changes to 27°C.
It implies that
, water sample temperature changed from 22°C to 27°C and metal sample temperature changed from 73°C to 27°C.
Since, Specific heat of water = 4.184 J/g°C
Let Cp be the specific heat of the metal.
Substituting values,
(13)(73°C - 27°C)(Cp) = (60)(27°C - 22℃)(4.184)
By solving, we get Cp =
Therefore, specific heat of the metal sample is 2.09899 J/g℃.