Step-by-step explanation:
⠀
⠀
⠀
⠀
⠀
Answer:
A function f(x) is said to be periodic, if there exists a positive real number T such that f(x+T) = f(x).
You can also just say: A periodic function is one that repeats itself in regular intervals.
Step-by-step explanation:
The smallest value of T is called the period of the function.
Note: If the value of T is independent of x then f(x) is periodic, and if T is dependent, then f(x) is non-periodic.
For example, here's the graph of sin x. [REFER TO PICTURE BELOW]
Sin x is a periodic function with period 2π because sin(x+2π)=sinx
Other examples of periodic functions are all trigonometric ratios, fractional x (Denoted by {x} which has period 1) and others.
In order to determine the period of the determined graph however, just know that the period of the sine curve is the length of one cycle of the curve. The natural period of the sine curve is 2π. So, a coefficient of b=1 is equivalent to a period of 2π. To get the period of the sine curve for any coefficient b, just divide 2π by the coefficient b to get the new period of the curve.
Hopefully this helped a bit.
Answer:
Step-by-step explanation:
m<4= 109*
m<3= 71*
m<1= 71*
Answer:
the prices were $0.05 and $1.05
Step-by-step explanation:
Let 'a' and 'b' represent the costs of the two sodas. The given relations are ...
a + b = 1.10 . . . . the total cost of the sodas was $1.10
a - b = 1.00 . . . . one soda costs $1.00 more than the other one
__
Adding these two equations, we get ...
2a = 2.10
a = 1.05 . . . . . divide by 2
1.05 -b = 1.00 . . . . . substitute for a in the second equation
1.05 -1.00 = b = 0.05 . . . add b-1 to both sides
The prices of the two sodas were $0.05 and $1.05.
_____
<em>Additional comment</em>
This is a "sum and difference" problem, in which you are given the sum and the difference of two values. As we have seen here, <em>the larger value is half the sum of the sum and difference</em>: a = (1+1.10)/2 = 1.05. If we were to subtract one equation from the other, we would find <em>the smaller value is half the difference of the sum and difference</em>: b = (1.05 -1.00)/2 = 0.05.
This result is the general solution to sum and difference problems.