Answer:
The osmotic pressure of cell is
KPa
Explanation:
As we know the osmotic pressure is equal to

Where
i is the Van Hoff factor
c is the concentration of solution
R is the ideal gas constant
and T is the temperature.
Substituting the given values, we get -

KPa
P = 11.133 atm (purple)
T = -236.733 °C(yellow)
n = 0.174 mol(red)
<h3>Further explanation </h3>
Some of the laws regarding gas, can apply to ideal gas (volume expansion does not occur when the gas is heated),:
- Boyle's law at constant T, P = 1 / V
- Charles's law, at constant P, V = T
- Avogadro's law, at constant P and T, V = n
So that the three laws can be combined into a single gas equation, the ideal gas equation
In general, the gas equation can be written

where
P = pressure, atm
V = volume, liter
n = number of moles
R = gas constant = 0.08206 L.atm / mol K
T = temperature, Kelvin
To choose the formula used, we refer to the data provided
Because the data provided are temperature, pressure, volume and moles, than we use the formula PV = nRT
T= 10 +273.15 = 373.15 K
V=5.5 L
n=2 mol

V=8.3 L
P=1.8 atm
n=5 mol

T = 12 + 273.15 = 285.15 K
V=3.4 L
P=1.2 atm

Answer:
1.heat a pan of water with just a little bit of water,have a boil
2.chosse ure salt
3.stir in has much salt has u can than take the pan off the heat
4.pour the mix into a glass jar
5.tie a string to an objeet that can lay accross the top and put just the string in ure mix
Explanation oh and look at it everyday hope that helps
Answer: 1 molar NaOH contains 40 grams of NaOH per every liter of water
Explanation:
so 2 M NaOH contains twice that amount, ie. 80 grams per liter. Then, ine 250 ml of weater, there should be 80/4 = 20 grams of solid NaOH dissolved.
Answer:
∆H > 0
∆Srxn <0
∆G >0
∆Suniverse <0
Explanation:
We are informed that the reaction is endothermic. An endothermic reaction is one in which energy is absorbed hence ∆H is positive at all temperatures.
Similarly, absorption of energy leads to a decrease in entropy of the reaction system. Hence the change in entropy of the reaction ∆Sreaction is negative at all temperatures.
The change in free energy for the reaction is positive at all temperatures since ∆S reaction is negative then from ∆G= ∆H - T∆S, we see that given the positive value of ∆H, ∆G must always return a positive value at all temperatures.
Since entropy of the surrounding= - ∆H/T, given that ∆H is positive, ∆S surrounding will be negative at all temperatures. This is so because an endothermic reaction causes the surrounding to cool down.