Answer:
Acetic acid Ka = 1.74 × 10⁻⁵
Trichloroacetic acid Ka = 2 × 10⁻¹
Explanation:
Let's consider the acid dissociation of acetic acid.
CH₃COOH(aq) ⇄ CH₃COO⁻(aq) + H⁺(aq)
The pKa of acetic acid is 4.76. The acid dissociation constant (Ka) is:
pKa = -log Ka
- pKa = log Ka
Ka = anti log (-pKa)
Ka = anti log (-4.76)
Ka = 1.74 × 10⁻⁵
Let's consider the acid dissociation of trichloroacetic acid.
CCl₃COOH(aq) ⇄ CCl₃COO⁻(aq) + H⁺(aq)
The pKa of trichloroacetic acid is 0.7. The acid dissociation constant (Ka) is:
pKa = -log Ka
- pKa = log Ka
Ka = anti log (-pKa)
Ka = anti log (-0.7)
Ka = 2 × 10⁻¹
Answer: increases
Explanation:
Increase in the temperature of a reaction system will cause the molecules of the reactants to possess higher kinetic energy which they would use to travel more randomly in the system, colliding more frequently with other excited molecules and with the wall of the containing vessel.
Thus, if temperature is increased, the number of collision per second also increases.
Answer:
rip there isnt a photo
Explanation:
i do know a lot about cells tho lol
Answer: False
Explanation:
4C2H6 + 7O2 --> 6H2O + 4CO2
8 Carbons on the reactant side, but 4 Carbons on the Product
24 Hydrogens on Reactant, 12 H on product
But Oxygen is balanced, 14 on each side
It would be “To obey the law of conservation of mass”