Answer:
The calculated density will be larger
Explanation:
The calculated density will be <u>larger</u>. Because, the volume is taken accurately, by the water displacement method. But, when we the took the mass, the water was present on the unknown solid. So, the mass of that water was added to the original mass of the solid. Hence, the mass measured was larger than the original mass. We, know from the formula of density that density is directly proportional to the mass of the object.
Density = Mass/Volume
Hence, the larger measured mass means the larger value of density.
Answer:
the relative molecular mass of hydrated iron (II) sulfate FeSO4.7H2O is 278.02
Explanation:
An ion-dipole force is a type of intermolecular force in which forces of attraction or repulsion occur between neighboring ions, molecules or atoms.
Answer:
![PV_{m} = RT[1 + (b-\frac{a}{RT})\frac{1}{V_{m} } + \frac{b^{2} }{V^{2} _{m} } + ...]](https://tex.z-dn.net/?f=PV_%7Bm%7D%20%3D%20RT%5B1%20%2B%20%28b-%5Cfrac%7Ba%7D%7BRT%7D%29%5Cfrac%7B1%7D%7BV_%7Bm%7D%20%7D%20%2B%20%5Cfrac%7Bb%5E%7B2%7D%20%7D%7BV%5E%7B2%7D%20_%7Bm%7D%20%7D%20%2B%20...%5D)
B = b -a/RT
C = b^2
a = 1.263 atm*L^2/mol^2
b = 0.03464 L/mol
Explanation:
In the given question, we need to express the van der Waals equation of state as a virial expansion in powers of 1/Vm and obtain expressions for B and C in terms of the parameters a and b. Therefore:
Using the van deer Waals equation of state:

With further simplification, we have:
![P = RT[\frac{1}{V_{m}-b } - \frac{a}{RTV_{m} ^{2} }]](https://tex.z-dn.net/?f=P%20%3D%20RT%5B%5Cfrac%7B1%7D%7BV_%7Bm%7D-b%20%7D%20-%20%5Cfrac%7Ba%7D%7BRTV_%7Bm%7D%20%5E%7B2%7D%20%7D%5D)
Then, we have:
![P = \frac{RT}{V_{m} } [\frac{1}{1-\frac{b}{V_{m} } } - \frac{a}{RTV_{m} }]](https://tex.z-dn.net/?f=P%20%3D%20%5Cfrac%7BRT%7D%7BV_%7Bm%7D%20%7D%20%5B%5Cfrac%7B1%7D%7B1-%5Cfrac%7Bb%7D%7BV_%7Bm%7D%20%7D%20%7D%20-%20%5Cfrac%7Ba%7D%7BRTV_%7Bm%7D%20%7D%5D)
Therefore,
![PV_{m} = RT[(1-\frac{b}{V_{m} }) ^{-1} - \frac{a}{RTV_{m} }]](https://tex.z-dn.net/?f=PV_%7Bm%7D%20%3D%20RT%5B%281-%5Cfrac%7Bb%7D%7BV_%7Bm%7D%20%7D%29%20%5E%7B-1%7D%20-%20%5Cfrac%7Ba%7D%7BRTV_%7Bm%7D%20%7D%5D)
Using the expansion:

Therefore,
![PV_{m} = RT[1+\frac{b}{V_{m} }+\frac{b^{2} }{V_{m} ^{2} } + ... -\frac{a}{RTV_{m} }]](https://tex.z-dn.net/?f=PV_%7Bm%7D%20%3D%20RT%5B1%2B%5Cfrac%7Bb%7D%7BV_%7Bm%7D%20%7D%2B%5Cfrac%7Bb%5E%7B2%7D%20%7D%7BV_%7Bm%7D%20%5E%7B2%7D%20%7D%20%2B%20...%20-%5Cfrac%7Ba%7D%7BRTV_%7Bm%7D%20%7D%5D)
Thus:
equation (1)
Using the virial equation of state:
![P = RT[\frac{1}{V_{m} }+ \frac{B}{V_{m} ^{2}}+\frac{C}{V_{m} ^{3} }+ ...]](https://tex.z-dn.net/?f=P%20%3D%20RT%5B%5Cfrac%7B1%7D%7BV_%7Bm%7D%20%7D%2B%20%5Cfrac%7BB%7D%7BV_%7Bm%7D%20%5E%7B2%7D%7D%2B%5Cfrac%7BC%7D%7BV_%7Bm%7D%20%5E%7B3%7D%20%7D%2B%20...%5D)
Thus:
equation (2)
Comparing equations (1) and (2), we have:
B = b -a/RT
C = b^2
Using the measurements on argon gave B = −21.7 cm3 mol−1 and C = 1200 cm6 mol−2 for the virial coefficients at 273 K.
[/tex] = 0.03464 L/mol
a = (b-B)*RT = (34.64+21.7)*(1L/1000cm^3)*(0.0821)*(273) = 1.263 atm*L^2/mol^2