Answer:
Solute = 5 mL; solution = 250 mL
Explanation:
The formula for percent by volume is

If you have 250 mL of a solution that is 2 % v/v,

If there is no change of volume on mixing,
Volume of solution = 250 mL
-Volume of solute = <u> </u><u>5</u><u> </u>
Volume of solvent = 245 mL
C6H12O6 molar mass: 180.15768 g
solute: sugar
molarity = moles of solute / liters of solution
Jones Soda:
33 g / 180.15768 g = 0.18 moles C6H12O6
M = 0.18 g / 0.355 L
M = 0.52
Sierra Mist:
62 g / 180.15768 g = 0.34 moles C6H12O6
M = 0.34 g / 0.591 L
M = 0.58
Sienna Mist has a higher molarity and is more concentrated.
Ouestion: Which of the following can serve as evidence to support the claim that human consumption of water impacts earths system?
Answer & Explanation: Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise. (MS-ESS3-3), (MS-ESS3-4)
Hope this helps and comment down below if you need more information!
Fr0ggyLikeSMELLY
Answer:
21.86582KJ
Explanation:
The graphical form of the Arrhenius equation is shown on the image attached. Remember that in the Arrhenius equation, we plot the rate constant against the inverse of temperature. The slope of this graph is the activation energy and its y intercept is the frequency factor.
Applying the equation if a straight line, y=mx +c, and comparing the given equation with the graphical form of the Arrhenius equation shown in the image attached, we obtain the activation energy of the reaction as shown.
Reaction of option c produces precipitate.
Rhodium on reacting with potassium phosphate produces rhodium phosphate which remain in solution due to low lattice energy for rhodium phosphate.
Niobium on reacting with lithium carbonate produces niobium carbonate and it will remain in aqueous form.
Cobalt on reacting with zinc nitrate produces cobalt nitrate. This, Co(NO3 )2 is insoluble precipitate and settles at bottom whereas zinc ion will remain in solution as follows:

Potassium ion on reacting with sodium sulfide produces potassium sulfide which remain in solution