As per Einstein's theory of relativity we know that when an object will move with the speed comparable to the speed of light then the length of the object will be different from its length at rest position
This is also known as length contraction theory
As we know here that

so here we know that
v = 0.95 c
so from above equation we will have


so here the length will be SHORTER
Everything in the universe that is not a star reflects light from Stars. Otherwise you can't see it.
Answer:

Explanation:
To solve this problem we need to apply the concept related to Angular Acceleration. We can find it through the equation

Where for definition,

The number of revolution
was given by 20 times, then


We know as well that the salad rotates 6 more times, therefore in angle measurements that is

The cook at the end stop to spin, then using our first equation,

re-arrange to solve
,


We can know find the required time,

Re-arrange to find t, and considering that 



Therefore take for the salad spinner to come to rest is 3 seconds with acceleration of 
The average thickness of a sheet of the paper is 0.1 mm.
The number of ice blocks that can be stored in the freezer is 80 blocks of ice.
<h3>Average thickness of a sheet of the paper</h3>
The average thickness of a sheet of the paper is calculated as follows;
average thickness = 6 mm/60 sheets = 0.1 mm /sheet
Thus, the average thickness of a sheet of the paper is 0.1 mm.
<h3>Volume of each block of ice</h3>
Volume = 10 cm x 10 cm x 4 cm
Volume = 400 cm³
<h3>Volume of the freezer</h3>
Volume = 40 cm x 40 cm x 20 cm = 32,000 cm³
<h3>Number of ice blocks that can be stored</h3>
n = 32,000 cm³/400 cm³
n = 80 blocks of ice
Thus, the number of ice blocks that can be stored in the freezer is 80 blocks of ice.
Learn more about average thickness here: brainly.com/question/24268651
#SPJ1
Answer:
The right hand rule shows the the direction if induced current when a conductor moves in a magnetic field with the thumb showing the direction of motion of the conductor, the first finger indicatting direction of the electromagnetic field and the third finger showing direction of induced current
Explanation: see attached file for diagram