Technically you can go forever on and on, but maybe your question was like how many rotations in a certain distance?
ThermalThermal relief valve installed in a Hydraulic system will have the highest pressure setting.
<h3>What is the hydraulic system? What are the types of hydraulic systems ? </h3>
Hydraulic system function and perform tasks through using a fluid that is pressurized . There are two types of hydraulic systems open loop hydraulic systems and closed loop hydraulic system . In open loop ,when the actuating mechanism is idle ,there will be fluid flow but no pressure.
Closed loop system use an additional pump called charge pump or feed pump.
Thermal relief valve is Designed to protect the pump and operators in circumstances when the pump is running and the discharge outlets have been closed .
to learn more about Hydraulic system click here brainly.com/question/27961071
#SPJ4
Answer:
Explanation:
a )
current in the wire = potential diff / resistance
= 23 / (15 x 10⁻³ )
= 1.533 x 10³ A .
b )
For resistance of a wire , the formula is
R = ρ L / S where ρ is specific resistance , L is length and S is cross sectional area of wire
putting the given values
15 x 10⁻³ = 4ρ / π x .003²
ρ = 106 x 10⁻⁹ ohm. m
= 10.6 x 10⁻⁸ ohm m
The metal wire appears to be platinum .
Answer:
the coefficient of Kinetic friction between the tires and road is 0.38
Option A) .38 is the correct answer
Explanation:
Given that;
final velocity v = 0
initial velocity u = 15m/s
time taken t = 4 s
acceleration a = ?
from the equation of motion
v = u + at
we substitute
0 = 15 + a × 4
acceleration a = -15/4 = - 3.75 m/s²
the negative sign tells us that its a deacceleration so the sign can be ignored.
Deacceleration due to friction a = μ × g
we substitute
3.75 = μ × 9.8
μ = 3.75 / 9.8 = 0.3826 ≈ 0.38
Therefore the coefficient of Kinetic friction between the tires and road is 0.38
Option A) .38 is the correct answer
Answer:
a = 0.1 s b. 10 s
Explanation:
Given that,
The frequency in circular motion, f = 10 Hz
(a) Let T is the period of itsrotation. We know that,
T = 1/f
So,
T = 1/10
= 0.1 s
(b) Frequency is number of rotations per unit time. So,

Hence, this is the required solution.