<span>The vertex of the parabola is the highest or lowest point of the graph.
</span><span>y=-4x^2+8x-12 = -4 (x^2 -2x +3)
Lets work with this now: </span>x^2 -2x +3
x^2 -2x +3 -> what is the closeset perfect square?
x^2 -2x +1 = (x-1)^2
So
x^2 -2x +3 = (x-1)^2 +2
Replacing to original
y=-4x^2+8x-12 = -4 (x^2 -2x +3) = -4 ((x-1)^2 +2) = -4 (x-1)^2 - 8
The min or max point is where the squared part = 0
So when x=1 , y= -4*0-8=-8
This will be the max of the parabola as there is - for the highest factor (-4x^2)
The max: x=1, y= -8
Answer:
$20.00
Step-by-step explanation:
I took a test and got it correct.
Answer:
a) 131/450
b) 1233/1276
Step-by-step explanation:
P(bad) = P(1st batch)*P(bad 1st batch ) + P(2nd batch )*P(bad 2nd batch) + P(3rd batch )*P(bad 3rd batch)
p(bad) =(60/360)*(1/3) + (120/360)*(1/4 ) + (180/360)*(1/5)
= 43/180
And that of P(good )
= 1 - 43/180
= 137/180
a)
P(defective) = P(bad)*P(defective /bad) + P(good)*P(defective /good)
= (43/180)*(9/10) + (137/180)*(1/10)
= 131/450
b)
P(Bc I Dc ) = P(good)*P(not defective |good) / P(not defective)
= (137/180)*(1 - 1/10) / (1 - 131/450)
= 1233/1276
Replace the letters with their given values:
6(6) - 8 / 4
Do the multiplication:
36-8 / 4
Subtract:
28/4
Divide to get the final answer :7
Answer = 7