(1) Doubling of the current through the wire will result in doubling of its magnetic field.
The magnetic field around a wire is a function of the current I and radial distance r

(with mu denoting the magnetic permeability of the medium). So, B is directly proportional to I. The field magnitude will double with the doubled current from 5A to 10A
(2) Using the same formula as in (1), we can see that the magnetic field is inversely proportional to the radial distance from the wire. So, a particle at 20cm will experience half the magnitude compared to a particle at 10cm.
(3) Answer
If a particle with a charge q moves through a magnetic field B with velocity v, it will be acted on by the magnetic force

So, a particle with charge -2uC will experience a magnetic force of same magnitude but opposite direction (and perpendicular to B) as compared to a particle with a charge of 2uC
Answer:
2,3, and 4 in ED are the correct answer choices
Explanation:
Explanation:
let vertical distance from A to C be
the constraint equation is:

we want to find
distance can be written as
which we will find by using Pythagorean theorem h 1 is a constant and can be written as h:



taking derivative w.r.t time we get


given
which gives us


Answer:
The CGS unit of force is the dyne, which is defined as 1 g⋅cm/s2, so the SI unit of force, the newton (1 kg⋅m/s2), is equal to 100000 dynes.
Explanation: