Answer:
520.8 nm
Explanation:
We are given that

1 nm=
Maximum kinetic energy,
V

We have to find the maximum wavelength of light.
We know that

Where 




=520.8 nm
Answer:
v = 7.18_m/s
Explanation:
Velocity of the earth towards the ball is = velocity of the ball moving towards earth
For object in free fall, we have
Where
v = final velocity
u = initial velocity
g = acceleration due to gravity
t = time
S = height of ball above ground
v^2 = u^2 - 2×g×(-S)
= 0 + 2×9.8×2.63 = 51.55_m^2/s^2
Velocity of the ball just before it hits the ground is
v = 7.18_m/s
From that list of choices, choice 'B' is the only example of a plane,
but it doesn't 'describe' it at all.
Answer:
a. 86.80 m
b. i. The mass of the bob
ii. The length of the pendulum
Explanation:
a. Determine the height of the smokestack.
Using T = 2π√(L/g) where T = period of pendulum = 18.7 s, L = length of pendulum = height of smokestack and g = acceleration due to gravity = 9.8 m/s².
So, making L subject of the formula, we have
T = 2π√(L/g)
T/2π = √(L/g)
squaring both sides, we have
(T/2π)² = L/g
L = (T/2π)²g
Substituting the values of the variables into the equation, we have
L = (T/2π)²g
L = (18.7 s/2π)²(9.8 m/s²)
L = (2.976 s)²(9.8 m/s²)
L = 8.857 s² × 9.8 m/s²
L = 86.796 m
L ≅ 86.80 m
b. What factors influence the period of a simple pendulum
The factors that influence the period of a simple pendulum are
i. The mass of the bob
ii. The length of the pendulum