For vertical motion, use the following kinematics equation:
H(t) = X + Vt + 0.5At²
H(t) is the height of the ball at any point in time t for t ≥ 0s
X is the initial height
V is the initial vertical velocity
A is the constant vertical acceleration
Given values:
X = 1.4m
V = 0m/s (starting from free fall)
A = -9.81m/s² (downward acceleration due to gravity near the earth's surface)
Plug in these values to get H(t):
H(t) = 1.4 + 0t - 4.905t²
H(t) = 1.4 - 4.905t²
We want to calculate when the ball hits the ground, i.e. find a time t when H(t) = 0m, so let us substitute H(t) = 0 into the equation and solve for t:
1.4 - 4.905t² = 0
4.905t² = 1.4
t² = 0.2854
t = ±0.5342s
Reject t = -0.5342s because this doesn't make sense within the context of the problem (we only let t ≥ 0s for the ball's motion H(t))
t = 0.53s
The Earth's gravity keeps the Moon orbiting us. It keeps changing the direction of the Moon's velocity. This means gravity makes the Moon accelerate all the time, even though its speed remains constant.
0.25 m/s squared
hope this helps x
Answer:
the orbits of the planets are elliptical
the sun is the center of the solar system
includes 9 planets
Answer:
a. 240 N due east
b. 540 N due west
Explanation:
Let east be the reference direction
(a) if the resultant force has a magnitude of 390 N and points east, and the 1st force is 150N due East, then the additional force would also due east and has a magnitude of
390 - 150 = 240 N
(b) if the resultant force has a magnitude of 390 N and points west, it would be -390N is eastern reference, and the 1st force is 150N due East, then the additional force would also due east and has a magnitude of
-390 - 150 = -540 N
This force would point west