This follows the law of conservation of momentum. Momentum is the product of mass and velocity of object.
Momentum = mass(m) x velocity(v)
law of conservation of momentum means that the total momentum of system before the collision of 2 objects is equal to the total momentum after the collision
Before the collision total momentum
= m1v1 + m2v2
m1 = 2 kg
v1 = 2 m/s
m2 = 6 kg
v2 = 0 m/s
substituting the values in the equation
total momentum before = (2 kg x 2 m/s) + (6 kg x 0 m/s)
total momentum = 4 kgm/s
after the collision the 2 objects stick together and have a common velocity
total momentum after the collision = (6 kg + 2 kg)x V = 8V
V = speed of the conglomerate particle
since total momentum before is equal to total momentum after
8V = 4
V = 2 m/s
speed of conglomerate particle is 2 m/s
Answer:
27 liters of hydrogen gas will be formed
Explanation:
Step 1: Data given
Number of moles C = 1.03 moles
Pressure H2 = 1.0 atm
Temperature = 319 K
Step 2: The balanced equation
C +H20 → CO + H2
Step 3: Calculate moles H2
For 1 mol C we need 1 mol H2O to produce 1 mol CO an 1 mol H2
For 1.03 moles C we'll have 1.03 moles H2
Step 4: Calculate volume H2
p*V = n*R*T
⇒with p = the pressure of the H2 gas = 1.0 atm
⇒with V = the volume of H2 gas = TO BE DETERMINED
⇒with n = the number of moles H2 gas = 1.03 moles
⇒with R = the gas constant = 0.08206 L*Atm/mol*K
⇒with T = the temperature = 319 K
V = (n*R*T)/p
V = (1.03 * 0.08206 *319) / 1
V = 27 L
27 liters of hydrogen gas will be formed
Answer:
2H2O2-----2H2O+O2
Explanation:
This is because theres the same number of atoms of each element on both sides
The answer is nuclear energy