The lack of a number preceding the carbon symbol C and the compound formula CO2 shows that there is one carbon atom and one carbon dioxide molecule. Subscript numbers in chemical formulas represent the number of atoms or molecules immediately preceding the subscript.
Answer:
See explanation
Explanation:
When the complex ion Co(H2O)6 2+(aq) is placed in solution and chloride ions are added, the following equilobrium is set up;
Co(H2O)62+(aq) + 4 Cl-(aq) <=> CoCl42-(aq) + 6 H2O(g)
Co(H2O)6 2+(aq) solution is pink in colour while CoCl42-(aq) solution is blue in colour.
Since the solubility of CoCl42-(aq) is endothermic, heating the solution will move the equilibrium position towards the right (more CoCl42-(aq) is formed and the solution is blue in colour).
When the solution is cooled, more Co(H2O)62+(aq) is formed and the equilibrium position shifts towards the left and the solution becomes pink in colour.
37.8 grams of CS2 equals to 37.8/76=0.5 mole. So the products have 0.5 mole CO2 which is 11.2 liters at STP. So according to the gas law, the volume at given condition is 12.4 liters. So the answer should be 12.2 liters.
11.48-gram of
are needed to produce 6.75 Liters of
gas measured at 1.3 atm pressure and 298 K
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
First, calculate the moles of the gas using the gas law,
PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 1.3 atm
V= 6.75 Liters
n=?
R= 
T=298 K
Putting value in the given equation:


Moles = 0.3588 moles
Now,


Mass= 11.48 gram
Hence, 11.48-gram of
are needed to produce 6.75 Liters of
gas measured at 1.3 atm pressure and 298 K
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1