Answer:
Br - C ≡ N
Explanation:
To draw the Lewis line-bond structure we need to bear in mind the octet rule, which states that in order to gain stability each <em>atom tends to share electrons until it has 8 electrons in its valence shell</em>.
- C has 4 e⁻ in its valence shell so it will form 4 covalent bonds.
- Br has 7 e⁻ in its valence shell so it will form 1 covalent bond.
- N has 5 e⁻ in its valence shell so it will form 3 covalent bonds.
The most stable structure that respects these premises is:
Br - C ≡ N
It does not have any H atom.
 
        
             
        
        
        
Answer:
The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
Explanation:
From the given information:
The activation barrier for the hydrolysis of sucrose into glucose and fructose is 108 kJ/mol. 
In this  same concentration for the glucose and fructose; the reaction rate can be calculated by the rate factor which can be illustrated from the Arrhenius equation;
Rate factor in the absence of catalyst:

Rate factor in the presence of catalyst:

Assuming the catalyzed reaction and the uncatalyzed reaction are  taking place at the same temperature :
Then;
the ratio of the rate factors can be expressed as:

![\dfrac{k_2}{k_1}={  \dfrac {e^{[  Ea_1 - Ea_2 ] }}{RT} }}](https://tex.z-dn.net/?f=%5Cdfrac%7Bk_2%7D%7Bk_1%7D%3D%7B%20%20%5Cdfrac%20%7Be%5E%7B%5B%20%20Ea_1%20-%20Ea_2%20%5D%20%7D%7D%7BRT%7D%20%7D%7D)
Thus;

Let say the assumed temperature = 25° C 
= (25+ 273)K
= 298 K
Then ;



The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
 
        
             
        
        
        
Explanation:
option A skeleton system is correct option
hope this helps you !
 
        
             
        
        
        
<span>11.2G is the answer to this problem.
</span>
        
                    
             
        
        
        
<span>Tertiary alcohols are the type of alcohols that will undergo acid-catalyzed dehydration under the mildest conditions. Types of tertiary alcohols are 2-methylpropan-2-ol and 2-methylbutan-2-ol. Other types of alcohols are referred to as primary alcohols and secondary alcohols.</span>