To determine the number of cups of milk, we first calculate for the volume of the milk needed. Then, we use a conversion factor for the volume from cubic centimeter to cups. From literature, 1 cubic centimeter is equal to 0.0042 cup. We do as follows:
Volume of milk = ( 2.50 kg ) ( 1000 g / 1 kg ) / 1.03 g /cm^3 = 2427.18 cm^3
cups of milk = 2427.18 cm^3 ( 0.0042 cup / 1 cm^3 ) = 10.19 cups
Answer: An atom in an excited state contains more of kinetic energy than the same atom in the ground state.
Explanation:
Kinetic energy is the energy acquired by an object due to its motion. And, thermal energy is the internal energy of an object arisen because of the kinetic energy present within the molecules of the object.
Potential energy is the energy acquired by an object due to its position.
The total energy present at the center of mass of an object is known as mass-energy.
So, when an atom gets excited then it means it is gaining kinetic energy due to which it moves from its initial position after getting excited.
Thus, we can conclude that an atom in an excited state contains more of kinetic energy than the same atom in the ground state.
They are called groups or family. Hope this helps
During the process of glycolysis 1 mole of glucose yields 2 pyruvic acid. In the process 2 ATPs molecules are used up and 4 other ATP molecules are produced by substrate level phosphorylation and 2 NADH are also produced. Therefore; for six moles of glucose; 12 ATP molecules will be used up, 24 ATP molecules will be generated, 12 moles of NADH will be used and 12 moles of pyruvate are made.
The percent composition of this compound :
Mg = 72.182%
N = 27.818%
<h3>Further explanation</h3>
Given
9.03 g Mg
3.48 g N
Required
The percent composition
Solution
Proust stated the Comparative Law that compounds are formed from elements with the same Mass Comparison so that the compound has a fixed composition of elements
Total mass of the compound :
= 9.03 g + 3.48 g
= 12.51 g
The percent composition :
Mg : 9.03/ 12.51 g x 100% = 72.182%
N : 3.48 / 12.51 g x 100% = 27.818%