8.8 × 10-5 M is the [H3O+] concentration in 0.265 M HClO solution.
Explanation:
HClO is a weak acid and does not completely dissociate in water as ions.
the equation of dissociation can be written and ice table to be formed.
HClO +H2O ⇒ ClO- + H3O+
I 0.265 0 0
C -x +x +x
E 0.265-x +x +x
Now applying the equation of Ka, where Ka is given as 2.9 × 10-8.
Ka = ![\frac{[ClO-][H3O+]}{[HClO]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BClO-%5D%5BH3O%2B%5D%7D%7B%5BHClO%5D%7D)
2.9 × 10^-8 = ![\frac{[x] [x]}{[0.265-x]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bx%5D%20%5Bx%5D%7D%7B%5B0.265-x%5D%7D)
= 7.698 x
x = 8.8 × 10-5 M
The hydronium ion concentration is 8.8 × 10-5 M in 0.265 M solution of HClO.
Answer:
SO₃(g) + H₂O(l) → H₂SO₄(aq)
Explanation:
The<em> molecular formula for the involved species</em> are:
- Sulfur trioxide = SO₃. ("trioxide" indicates the presence of 3 oxygen atoms).
With the above information in mind we can proceed to write the reaction equation:
- SO₃(g) + H₂O(l) → H₂SO₄(aq)
Answer:
4 atmospheric pressure is needed to get a volume of 25 litres
There are 48.72 g Fluorine ions
<h3>Further explanation
</h3>
Proust stated the Comparative Law that compounds are formed from elements with the same Mass Comparison so that the compound has a fixed composition of elements
In the same compound, although from different sources and formed by different processes, it will still have the same composition/comparison
%F in CaF₂ :

mass of Fluorine :

So mass Fluorine ions(2 ions F in CaF₂⇒Ca²⁺+2F⁻) :

Answer:
3.74 M
Explanation:
We know that molarity is moles divided by liters. The first thing to do here is convert your 1500 mL of solution to L. There's 1,000 mL in 1 L, so you need to divide 1500 by 1000:
1500 ÷ 1000 = 1.50
Now you can plug your values into the equation for molarity:
5.60 mol ÷ 1.50 L = 3.74 M