1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rodikova [14]
3 years ago
14

What is the acceleration of a 1,500 kg car if the net force of 1,200 N is exerted on it?

Physics
1 answer:
liberstina [14]3 years ago
8 0

Answer:

a = 0.8 \frac{m}{{s}^{2} }

Explanation:

Newton's second Law:

F = ma

where

F: net force applied

m: mass of the object

a: acceleration

so you just need to substitute your values and solve for a. In other words...

1200 = 1500a \\ a =  \frac{1200}{1500}  = 0.8 \frac{m}{ {s}^{2} }

You might be interested in
Find the magnitude of the resultant force and the angle it makes with the positive x-axis. (Let |a| = 22 lb and |b| = 16 lb. Rou
SVEN [57.7K]

Incomplete question as the angle between the force is not given I assumed angle of 55°.The complete question is here

Two forces, a vertical force of 22 lb and another of 16 lb, act on the same object. The angle between these forces is 55°. Find the magnitude and direction angle from the positive x-axis of the resultant force that acts on the object. (Round to one decimal places.)  

Answer:

Resultant Force=33.8 lb

Angle=67.2°

Explanation:

Given data

Fa=22 lb

Fb=16 lb

Θ=55⁰

To find

(i) Resultant Force F

(ii)Angle α

Solution

First we need to represent the forces in vector form

\sqrt{x} F_{1}=22j\\ F_{2}=u+v\\F_{2}=16sin(55)i+16cos(55)j\\F_{2}=16(0.82)i+16(0.5735)j\\F_{2}=13.12i+9.176j

Total Force

F=F_{1}+F_{2}\\ F_{2}=22j+13.12i+9.176j\\F_{2}=13.12i+31.176j

The Resultant Force is given as

|F|=\sqrt{x^{2} +y^{2} }\\|F|=\sqrt{(13.12)^{2} +(31.176)^{2} }\\ |F|=33.8lb

For(ii) angle

We can find the angle bu using tanα=y/x

So

tan\alpha =\frac{31.176}{13.12}\\ \alpha =tan^{-1} (\frac{31.176}{13.12})\\\alpha =67.2^{o}

7 0
3 years ago
If an automobile had a 100%-efficient engine, transferring all of the fuel's energy to work, would the engine be warm to your to
svetlana [45]

Answer:

The engine would be warm to touch, and the exhaust gases would be at ambient temperature. The engine would not vibrate nor make any noise. None of the fuel entering the engine would go unused.

Explanation:

In this ideal engine, none of these events would happen due to the nature of the efficiency.

We can define efficiency as the ratio between the used energy and the potential generable energy in the fuel.

n=W, total/(E, available).

However, in real engines the energy generated in the combustion of the fuel transforms into heat (which heates the exhost gases, and the engine therefore transfering some of this heat to the environment). Also, there are some mechanical energy loss due to vibrations and sound, which are also energy that comes from the fuel combustion.

5 0
3 years ago
I think I know this one but I don’t at the same time
galben [10]

Answer: B.) 6

Explanation:

To answer this problem you get the number of students who attended Wednesday (18) and the number of students who attended Tuesday (12) and subtract 18 - 12 = 6

Answer = B.) 6

8 0
3 years ago
10) Two students want to use a 12-meter long rope to create standing waves. They first measure the speed at which a single wave
zhannawk [14.2K]

Answer:

To create a second harmonic the rope must vibrate at the frequency of 3 Hz

Explanation:

First we find the fundamental frequency of the rope. The fundamental frequency is the frequency of the rope when it vibrates in only 1 loop. Therefore,

f₁ = v/2L

where,

v = speed of wave = 36 m/s

L = Length of rope = 12 m

f₁ = fundamental frequency

Therefore,

f₁ = (36 m/s)/2(12 m)

f₁ = 1.5 Hz

Now the frequency of nth harmonic is given in general, as:

fn = nf₁

where,

fn = frequency of nth harmonic

n = No. of Harmonic = 2

f₁ = fundamental frequency = 1.5 Hz

Therefore,

f₂ = (2)(1.5 Hz)

<u>f₂ = 3 Hz</u>

5 0
3 years ago
A 15 m uniform ladder weighing 500 N rests against a frictionless wall. The ladder makes a 60° angle with horizontal. (a) Find t
scoray [572]

Answer:

a)    F₁ = 267.3 N,   N₁ = 1300 N,  b)    μ = 0.324

Explanation:

For this exercise we use the rotational equilibrium condition, we have a reference system is the floor and the anticlockwise rotations as positive, in the adjoint we can see a diagram of the forces

           

let's use subscript 1 for the ladder and 2 for the firefighter

            ∑ τ = 0

          -W₁ x₁ - W₂ x₂ + N₁ y = 0

           N₁ = \frac{W_1 x_1 + W_2 x_2}{y}          (1)

the center of mass of the ladder is at its geometric center,

d = L / 2 = 15/2 = 7.5 m

         cos 60 = x₁ / d₁

         x₁ = d₁ cos 60

         x₁ = 7.5 cos 60

         x₁ = 3.75 m

for the firefighter d₂ = 4 m

         cos 60 = x₂ / d₂

         x₂ = d₂ cos 60

          x₂ = 4 cos 60 = 2 m

for the fulcrum d₃ = 15 m

         sin 60 = y / d₃

         y = d₃ sin 60

         y = 15 sin 60

         y = 13 m

we look for the Normal by substituting in equation 1

         N₂ = \frac{500 \ 3.75 \ + 800 \ 2}{13}

         N₂ = 267.3 N

now let's use the translational equilibrium relations

 X axis

           F₁ - N₂ = 0

           F₁ = N₂

           F₁ = 267.3 N

Axis y

          N₁ - W₁ -W₂ = 0

          N₁ = W₁ + W₂

          N₁ = 500 + 800

          N₁ = 1300 N

b) for this case change the firefighter's distance d₂ = 9 m

          x₂ = 9 cos 60

          x₂ = 4.5 m

we substitute in 1

          N₂ = \frac{500 \ 3.75 \ + 800 \ 4.5}{13}  

          N₂ = 421.15 N

of the translational equilibrium equation on the x-axis

          fr = F₁ = N₂

          fr = 421.15 N

friction force has the expression

          fr = μ N

in this case the reaction of the Earth to the support of the ladder is N1 = 1300N

          μ = fr / N₁

          μ = 421.15 / 1300

          μ = 0.324

8 0
2 years ago
Other questions:
  • An air compressor compresses 15 L/s of air at 120 kPa and 20°C to 800 kPa and 300°C while consuming 6.2 kW of power. How much of
    7·1 answer
  • Which factors are most significant in describing the climate of a region?
    8·1 answer
  • Water ia boled at 1 at pressure in a coffe aker equpped with an immension-type electric heating element. The coffee maker intial
    10·1 answer
  • When boating in shallow areas or seagrass beds, you see a mud trail in your wake where your boat has churned up the bottom. If y
    5·1 answer
  • An electron is trapped in an infinite square-well potential of width 0.6 nm. If the electron is initially in the n = 4 state, wh
    6·1 answer
  • A swimming pool heater has to be able to raise the temperature of the 40 000 gallons of water in the pool by 10.0 C°.
    6·1 answer
  • Compare and contrast the way molecules behave in liquid to the way they behave in solids and gases.
    13·2 answers
  • 1. If a rock is dropped from a 600 meter cliff, how long will it take to hit the ground?<br> Dl
    5·1 answer
  • Which of the following statements is true?
    5·1 answer
  • The revolution of the earth around the sun demonstrate what motion?​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!